Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Increasing the retained dose by plasma immersion ion implantation and deposition

Conference ·
OSTI ID:10196983
The retained dose of ions can be increased by Plasma Immersion Ion Implantation and Deposition (PIIID). A substrate is immersed in a metal or carbon plasma and a negative repetitively pulsed bias voltage is applied. During the pulses, an electric sheath is formed around the substrate and ions are accelerated through the sheath and implanted into the substrate. Direct and recoil ion implantation and sputtering take place during the pulses whereas low-energy deposition occurs between the pulses. The condensable plasma can be produced using a cathodic arc plasma source combined with a magnetic macroparticle filter. PIIID can be applied to perform fast high-dose implantations or to deposit thin films with broad intermixing at the film-substrate interface. The bias voltage duty cycle can be tuned to sputter away the film deposited during pulse off-time (similar to the method of sacrificial layer). We have simulated the PIIID process using the Monte Carlo code T-DYN 4.0. This code allows a calculation of the dose-dependent depth profile for a process with deposition and implantation phases, taking sputtering into account. Predicted retained doses and experimentally obtained retained doses measured by Rutherford backscattering spectrometry are compared.
Research Organization:
Lawrence Berkeley Lab., CA (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC03-76SF00098
OSTI ID:
10196983
Report Number(s):
LBL--35679; CONF-940731--3; ON: DE95003423
Country of Publication:
United States
Language:
English