skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Observation of the antimatter helium-4 nucleus

Journal Article · · Nature
DOI:https://doi.org/10.1038/nature10079· OSTI ID:1019497

High-energy nuclear collisions create an energy density similar to that of the Universe microseconds after the Big Bang; in both cases, matter and antimatter are formed with comparable abundance. However, the relatively short-lived expansion in nuclear collisions allows antimatter to decouple quickly from matter, and avoid annihilation. Thus, a high-energy accelerator of heavy nuclei provides an efficient means of producing and studying antimatter. The antimatter helium-4 nucleus ({sup 4}He), also known as the anti-{alpha} ({alpha}), consists of two antiprotons and two antineutrons (baryon number B = -4). It has not been observed previously, although the {alpha}-particle was identified a century ago by Rutherford and is present in cosmic radiation at the ten per cent level. Antimatter nuclei with B < -1 have been observed only as rare products of interactions at particle accelerators, where the rate of antinucleus production in high-energy collisions decreases by a factor of about 1,000 with each additional antinucleon. Here we report the observation of {sup 4}He, the heaviest observed antinucleus to date. In total, 18 {sup 4}He counts were detected at the STAR experiment at the Relativistic Heavy Ion Collider (RHIC) in 10{sup 9} recorded gold-on-gold (Au+Au) collisions at centre-of-mass energies of 200 GeV and 62 GeV per nucleon-nucleon pair. The yield is consistent with expectations from thermodynamic and coalescent nucleosynthesis models, providing an indication of the production rate of even heavier antimatter nuclei and a benchmark for possible future observations of {sup 4}He in cosmic radiation.

Research Organization:
Brookhaven National Lab. (BNL), Upton, NY (United States). Relativistic Heavy Ion Collider (RHIC)
Sponsoring Organization:
DOE - OFFICE OF SCIENCE
DOE Contract Number:
DE-AC02-98CH10886
OSTI ID:
1019497
Report Number(s):
BNL-95097-2011-JA; R&D Project: PO-3; KB0202012; TRN: US1103646
Journal Information:
Nature, Vol. 473, Issue 7347; ISSN 0028--0836
Country of Publication:
United States
Language:
English