skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Model DMMP/TiO2 (110) Intermolecular Potential Energy Function Developed from ab Initio Calculations

Journal Article · · Journal of Physical Chemistry C, 115(25):12403-12413
DOI:https://doi.org/10.1021/jp1112137· OSTI ID:1019200

A hierarchy of electronic structure calculations, scalings, and fittings were used to develop an analytic intermolecular potential for dimethyl methylphosphonate (DMMP) interacting with the TiO2 rutile (110) surface. The MP2/aug-cc-pVDZ (6-311+G** for Ti) level of theory, with basis set superposition error (BSSE) corrections, was used to calculate multiple intermolecular potential curves between TiO5H6 as a model for the Ti and O atoms of the TiO2 surface, and CH3OH and O=P(CH3)(OH)2 as models for different types of atoms comprising DMMP. Each intermolecular potential energy emphasized a particular atom-atom interaction, and the curves were fit simultaneously by a sum of two-body potentials between the atoms of the two interacting molecules. The resulting analytic intermolecular potential gives DMMP/TiO5H6 potential curves in excellent agreement with those calculated using MP2/aug-cc-pVDZ (6-311+G** for Ti) theory. MP2 theory with the smaller basis set, 6-31++G** (6-31G** for Ti), gives DMMP/TiO5H6 potential energy curves similar to those found using MP2/aug-cc-pVDZ (6-311+G** for Ti), suggesting the smaller basis set may be used to describe DMMP interactions with larger cluster models of the TiO2 surface. The TiO5H6 cluster does not model either the 6-fold coordinated Ti-atoms or the bridging O-atoms of the TiO2 (110) surface and to also model these atoms MP2/6-31++G** (6-31G** for Ti) theory was used to calculate potential energy curves for DMMP interacting with the larger Ti3O13H14 cluster and much large cluster Ti11O40H36 cluster. The two-body potential energy curves for DMMP/TiO5H6 were scaled to fit both the DMMP/Ti3O13H14 and DMMP/Ti11O40H36 potential energy curves. The resulting parameters for the 5- and 6-fold coordinated Ti-atoms and bridging and bulk O-atoms were used to develop an analytic intermolecular potential for DMMP interacting with rutile TiO2 (110).

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1019200
Report Number(s):
PNNL-SA-80222; 44891; TRN: US1103574
Journal Information:
Journal of Physical Chemistry C, 115(25):12403-12413, Vol. 115, Issue 25; ISSN 1932--7447
Country of Publication:
United States
Language:
English