skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Irradiation damage behavior of low alloy steel wrought and weld materials

Conference ·
OSTI ID:10190196

A study was undertaken to evaluate the irradiation damage response of several different types of low alloy steel: vintage type ASTM A302 Grade B (A302B) plates and welds containing different Ni and Cu concentrations, 3.5% Ni steels similar to ASTM A508 Class 4, welds containing about 1% Ni (similar to type 105S), and 3.5% Ni steels with ``superclean`` composition. All materials were irradiated at several different irradiation damage levels ranging from 0.0003 to 0.06 dpa at 232C (450F). Complete Charpy V-notch impact energy transition temperature curves were generated for all materials before and after irradiation to determine transition temperature at 4IJ (30 ft-lb) or 47J (35 ft-lb) and the upper shelf energy. Irradiation damage behavior was measured by shift in Charpy 41J or 47J transition temperature ({Delta}TT4{sub 41J} or {Delta}TT{sub 47J}) and lowering of upper shelf Charpy energy at a given irradiation damage level. It was found that chemical composition greatly influenced irradiation damage behavior; highest irradiation damage (greatest {Delta}TT) was found in an A302B type weld containing 1.28% Ni and 0.20% Cu while the least damage was found in 3.5% Ni, 0.05% Cu, superclean wrought materials. Combination of Ni and Cu was found to affect irradiation damage behavior at higher irradiation damage levels in the A302B welds where the 1.28% Ni, 0.20% Cu weld showed more damage than a 0.60% Ni, 0.31% Cu weld. For the 3.5% Ni steels, fabrication influenced irradiation behavior in that a silicon (Si) killed material showed greater irradiation damage than a low silicon material. In general, the 3.5% Ni materials with low copper showed less irradiation damage than the A302B materials.

Research Organization:
Bettis Atomic Power Lab., West Mifflin, PA (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC11-89PN38014
OSTI ID:
10190196
Report Number(s):
WAPD-T-2991; CONF-930825-7; ON: DE94000519; TRN: 93:023986
Resource Relation:
Conference: 6. international symposium on environmental degradation of materials in nuclear power systems: water reactors,San Diego, CA (United States),1-5 Aug 1993; Other Information: PBD: [1993]
Country of Publication:
United States
Language:
English