skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Improved methods for calculating thermodynamic properties of magnetic systems using Wang-Landau density of states

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.3565413· OSTI ID:1018648

The Wang-Landau method [F. Wang and D. P. Landau, Phys. Rev. E 64, 056101 (2001)] is an efficient way to calculate the density of states (DOS) for magnetic systems, and the DOS can then be used to rapidly calculate the thermodynamic properties of the system. A technique is presented that uses the DOS for a simple Hamiltonian to create a stratified sample of configurations which are then used calculate a warped DOS for more realistic Hamiltonians. This technique is validated for classical models of bcc Fe with exchange interactions of increasing range, but its real value is using the DOS for a model Hamiltonian calculated on a workstation to select the stratified set of configurations whose energies can then be calculated for a density-functional Hamiltonian. The result is an efficient first-principles calculation of thermodynamic properties such as the specific heat and magnetic susceptibility. Another technique uses the sample configurations to calculate the parameters of a model exchange interaction using a least-squares approach. The thermodynamic properties can be subsequently evaluated using traditional Monte Carlo techniques for the model exchange interaction. Finally, a technique that uses the configurations to train a neural network to estimate the configuration energy is also discussed. This technique could potentially be useful in identifying the configurations most important in calculating the warped DOS. VC2011 American Institute of Physics. [doi:10.1063/1.3565413]

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
1018648
Journal Information:
Journal of Applied Physics, Vol. 109, Issue 7; ISSN 0021-8979
Country of Publication:
United States
Language:
English