skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Pilot-scale verification test for Hanford grout

Conference ·
OSTI ID:10179131

The Grout Treatment Facility (GTF) at Hanford, Washington will process the low-level fraction of selected double-shell tank (DST) wastes on the Hanford Site, to produce a cementitious waste form. This facility, which is operated by Westinghouse Hanford Company (Westinghouse Hanford), mixes liquid wastes with cementitious materials and pumps the resulting grout slurry into large [5,300 cubic meters (m{sup 3})] concrete vaults. Once in the vault, the grout cures to produce a waste form that immobilizes radioactive and hazardous constituents through chemical reactions and/or microencapsulation. Although this disposal scheme has several advantages, pouring grout into large vaults raises concerns about how to handle the heat generated from the exothermic hydration reactions that occur as the grout cures. WHC`s current strategy for addressing the problem of hydration heat is to fill the vault in stages and use forced ventilation in the airspace above the grout to speed heat removal. The varying composition of Hanford tank waste requires that each tank be processed in a separate campaign using a grout formulation specifically designed for that waste. The next tank scheduled for treatment is DST 241-AN-106. A four-phase process for developing the grout formulation development process is used to assure that the formulation will meet various processing and waste form requirements. These phases are: (1) laboratory formulation development studies and modeling with simulated wastes, (2) laboratory variability studies with simulated waste, (3) pilot-scale verification tests with simulated wastes, and (4) laboratory verification tests with actual waste. This paper presents an overview of the pilot-scale verification tests conducted as part of the grout formulation development for the 241-AN-106 tank waste. The paper specifically discusses results dealing with (1) the grout slurry critical flow rate and (2) the ability to handle grout hydration heat with forced ventilation.

Research Organization:
Pacific Northwest Lab., Richland, WA (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC06-76RL01830
OSTI ID:
10179131
Report Number(s):
PNL-SA-21514; CONF-930205-80; ON: DE93018788; TRN: 93:019034
Resource Relation:
Conference: Waste management `93,Tucson, AZ (United States),28 Feb - 4 Mar 1993; Other Information: PBD: Feb 1993
Country of Publication:
United States
Language:
English