Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Variable speed rotary compressor and adjustable speed drive efficiencies measured in the laboratory

Conference ·
OSTI ID:10175225
Two state-of-the-art variable-speed rotary compressors, of nominal one ton cooling capacity, were instrumented and tested in the laboratory. Both compressors were identical except for their respective variable-speed drive systems (i.e., motor and inverter). One compressor had an inverter driven induction motor (IDIM) drive, and the other had a permanent magnet electronically commutated motor drive (PM-ECM). The laboratory study evaluated the compressor`s efficiency under representative variable-speed conditions. Testing was conducted as a function of compressor drive frequency and of refrigerant condensing and evaporating conditions. Saturated refrigerant conditions, inlet superheat, and subcooling were controlled using a secondary refrigerant calorimeter. Spectrum analysis was conducted on the current input to one phase of the three- phase drive systems to measure motor speed and characterize harmonic content of the inverters. An optimal volt per Hz ratio was determined at 120-, 90-, 60-, and 30-Hz drive frequencies and at different load conditions for the rotary with induction motor as driven by a PWM inverter and also by a motor generator set (ideal induction motor drive). Variation of voltage input to the compressor had the largest effect at the lowest drive frequency (30Hz). A 5% variation about the optimal voltage at 30 Hz frequency caused a roughly 5% drop in compressor isentropic efficiency. Calorimeter data were used to develop modulating compressor and drive system performance maps. Performances of the two compressors were compared and the rotary with PM-ECM drive showed better efficiency trends at 30-Hz drive frequency. Above the 30-Hz drive frequency no clear advantage was observed for the PM-ECM vs the IDIM, possibly due to oversizing of the PM-ECM inverter.
Research Organization:
Oak Ridge National Lab., TN (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC05-84OR21400
OSTI ID:
10175225
Report Number(s):
CONF-921110--26; ON: DE92040026
Country of Publication:
United States
Language:
English