Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Influence of restricted diffusion on retrogressive free-radical reactions

Conference ·
OSTI ID:10173685

The effects of restricted mass transport on retrogressive reaction pathways can be probed through the study of model compounds immobilized on silica surfaces. Silica-immobilized bibenzyl undergoes a free radical chain rearrangement reaction that converts the thermally labile bibenzylic linkage into a more refractory diphenylmethane-type linkage. The efficiency of this process was found to be quite sensitive to the structure of neighboring molecules on the surface. Co-immobilized naphthalene was more effective that co-immobilized tetralin (a hydrogen donor) in inhibiting the process, apparently by retarding the key hydrogen atom transfer step. The effect of the co-attached molecules on the retrogressive cyclization-dehydrogenation path as well as other reaction pathways for this complex system remain under investigation.

Research Organization:
Oak Ridge National Lab., TN (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC05-84OR21400
OSTI ID:
10173685
Report Number(s):
CONF-930904--5; ON: DE93017757
Country of Publication:
United States
Language:
English