Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Fin-efficiency calculation for condensation in the presence of noncondensable gases

Conference ·
OSTI ID:10172236
Plate-fin heat exchangers are being considered for many condenser applications. They are commonly used for the gas-separation process because they can provide a high thermal performance to obtain a low mean-temperature difference, essential for the gas-separation process. Plate-fin heat exchangers are also considered for the heat-pump system using nonazeotropic refrigerant mixtures. The brazed plate-fin condenser was considered to be a leading candidate for the Ocean Thermal Energy Conversion (OTEC) system, where high-performance heat exchangers are essential for maintaining a low mean-temperature difference. Calculation of the fin efficiency is difficult for condensation in the presence of noncondensable gases due to the spatial variation of the interfacial temperature. An analysis was carried out to develop a simplified method to calculate the fin efficiency for condensation of a vapor in the presence of noncondensable gases. The analysis includes the variation in the interfacial temperature along the fin surface. Appropriate assumptions are made to simplify the coupled heat-conduction equation in the fin and the heat/mass fluxes at the interface. The resulting expression for the fin efficiency includes mass-flux parameters, and it is similar to the common expression used for single-phase flow.
Research Organization:
Argonne National Lab., IL (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
W-31109-ENG-38
OSTI ID:
10172236
Report Number(s):
ANL/ES/CP--80354; CONF-9303200--2; ON: DE93017684
Country of Publication:
United States
Language:
English