Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

A comparison of simulation models for predicting soil water dynamics in bare and vegetated lysimeters

Technical Report ·
DOI:https://doi.org/10.2172/10167010· OSTI ID:10167010
This report describes the results of simulation models used to predict soil water storage dynamics at the Field Lysimeter Test Facility (FLTF) weighing lysimeters. The objectives of this research is to develop the capability to predict soil water storage dynamics with plants in support of water infiltration control studies for the Hanford Permanent Isolation Barrier Development Program. It is important to gain confidence in one`s ability to simulate soil water dynamics over long time periods to assess the barrier`s ability to prevent drainage. Two models were compared for their ability to simulate soil water storage dynamics with and without plants in weighing lysimeters, the soil water infiltration and movement (SWIM) and the simulation of production and utilization of rangelands (SPUR-91) models. These models adequately simulated soil water storage dynamics for the weighing lysimeters. The range of root mean square error values for the two models was 7.0 to 19.8. This compares well with the range reported by Fayer et al. (1992) for the bare soil data sets of 8.1 to 22.1. Future research will test the predictive capability of these models for longer term lysimeter data sets and for historical data sets collected in various plant community types.
Research Organization:
Pacific Northwest Lab., Richland, WA (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC06-76RL01830
OSTI ID:
10167010
Report Number(s):
PNL--8675; ON: DE93016575
Country of Publication:
United States
Language:
English