Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Development of nondestructive evaluation methods and prediction of effects of flaws on the fracture behavior of structural ceramics

Conference ·
OSTI ID:10158847
Characterization of ceramic matrix composites (continuous and whisker-type) by nondestructive evaluation (NDE) methods and an understanding of fracture behavior, together with correlation of fracture and NDE data, may provide insight into the prediction of component performance and the development of process technology. Knowledge of the degradation extent of fiber tows or monofilament degradation after processing, extent of open porosity before densification, and filament/fiber alignments before and after processing are also examples of important variables to be measured. Work in this program has emphasized continuous fiber ceramic matrix composites (CFCCs) that use chemical vapor infiltration (CVI)-infiltrated SiC/SiC materials, primarily those made of Nicalon satin or plain weave with 16 {times} 16 tows/in. in 2-D layups. All studied samples were provided by Oak Ridge National Laboratory and were made using 100 layers per inch. CVI specimens with 0/30/60, 0/90, and 0/45 were examined by 3-D X-ray microtomography to characterize in-plane fiber orientations. Current information suggests that for Nicalon-type fiber architecture, a {plus_minus}2--1/2{degrees} misalignment may not affect mechanical properties. Thus the near-term goal has been to establish a detection capability for angular orientation. By using 512 {times} 512 images from 3-D X-ray CT data with pixel sizes of < 140 {mu}m and a special 2-D fast-Fourier transform image processing analysis, we have shown that fiber orientations to {plus_minus}2--1/2{degrees} with SiC/SiC CVI type 2-D weave architecture can be measured.
Research Organization:
Argonne National Lab., IL (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
W-31109-ENG-38
OSTI ID:
10158847
Report Number(s):
ANL/CP--72465; CONF-9205123--10; ON: DE92016395
Country of Publication:
United States
Language:
English