A parallel implementation of particle tracking with space charge effects on an INTEL iPSC/860
Conference
·
OSTI ID:10158091
Particle-tracking simulation is one of the scientific applications that is well-suited to parallel computations. At the Superconducting Super Collider, it has been theoretically and empirically demonstrated that particle tracking on a designed lattice can achieve very high parallel efficiency on a MIMD Intel iPSC/860 machine. The key to such success is the realization that the particles can be tracked independently without considering their interaction. The perfectly parallel nature of particle tracking is broken if the interaction effects between particles are included. The space charge introduces an electromagnetic force that will affect the motion of tracked particles in 3-D space. For accurate modeling of the beam dynamics with space charge effects, one needs to solve three-dimensional Maxwell field equations, usually by a particle-in-cell (PIC) algorithm. This will require each particle to communicate with its neighbor grids to compute the momentum changes at each time step. It is expected that the 3-D PIC method will degrade parallel efficiency of particle-tracking implementation on any parallel computer. In this paper, we describe an efficient scheme for implementing particle tracking with space charge effects on an INTEL iPSC/860 machine. Experimental results show that a parallel efficiency of 75% can be obtained.
- Research Organization:
- Superconducting Super Collider Lab., Dallas, TX (United States)
- Sponsoring Organization:
- USDOE, Washington, DC (United States)
- DOE Contract Number:
- AC35-89ER40486
- OSTI ID:
- 10158091
- Report Number(s):
- SSCL-Preprint--149-Rev.2; CONF-930511--54-Rev.2; ON: DE93014163
- Country of Publication:
- United States
- Language:
- English
Similar Records
A parallel implementation of particle tracking with space charge effects on an Intel iPSC/860
A parallel implementation of particle tracking with space charge effects on an Intel iPSC/860
A parallel implementation of particle tracking with space charge effects on an INTEL iPSC/860
Technical Report
·
Sat Aug 01 00:00:00 EDT 1992
·
OSTI ID:10178828
A parallel implementation of particle tracking with space charge effects on an Intel iPSC/860
Technical Report
·
Sat Aug 01 00:00:00 EDT 1992
·
OSTI ID:6996971
A parallel implementation of particle tracking with space charge effects on an INTEL iPSC/860
Conference
·
Sat May 01 00:00:00 EDT 1993
·
OSTI ID:6436205
Related Subjects
43 PARTICLE ACCELERATORS
430200
99 GENERAL AND MISCELLANEOUS
990200
ALGORITHMS
ARRAY PROCESSORS
BEAM DYNAMICS
BEAM DYNAMICS, FIELD CALCULATIONS, AND ION OPTICS
COMPUTERIZED SIMULATION
MATHEMATICS AND COMPUTERS
MESH GENERATION
PARALLEL PROCESSING
SPACE CHARGE
SUPERCONDUCTING SUPER COLLIDER
THREE-DIMENSIONAL CALCULATIONS
TRAJECTORIES
430200
99 GENERAL AND MISCELLANEOUS
990200
ALGORITHMS
ARRAY PROCESSORS
BEAM DYNAMICS
BEAM DYNAMICS, FIELD CALCULATIONS, AND ION OPTICS
COMPUTERIZED SIMULATION
MATHEMATICS AND COMPUTERS
MESH GENERATION
PARALLEL PROCESSING
SPACE CHARGE
SUPERCONDUCTING SUPER COLLIDER
THREE-DIMENSIONAL CALCULATIONS
TRAJECTORIES