Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Corrosive effects of supercritical carbon dioxide and cosolvents on metals

Conference ·
OSTI ID:10155717

With the eventual phase-out of chlorofluorocarbons, and restrictive regulations concerning the use of cleaning solvents such as hydrochlorofluorocarbons, and other volatile organic compounds, it is essential to seek new, environmentally acceptable cleaning processes. In the DOE Complex and in industry, an environmentally sound process for precision cleaning of machined metal parts is one of the issues that needs to be addressed. At Sandia, we are investigating the use of supercritical carbon dioxide (CO{sub 2}) as an alternative cleaning solvent for this application. Carbon dioxide is nontoxic, recyclable, and relatively inexpensive. Supercritical CO{sub 2} has been demonstrated as a solvent for many nonpolar organic compounds, including hydrocarbon-based machining and lubricating oils. The focus of this work is to investigate any corrosive effects of supercritical CO{sub 2} cleaning on metals. Sample coupons of several common metals were statically exposed to pure supercritical CO{sub 2}, water saturated supercritical CO{sub 2}, and 10 wt % methanol/CO{sub 2} cosolvent at 24,138 kPa (3500 psi) and 323K (50C) for 24 hours. Gravimetric analysis and magnified visual inspection of the coupons were performed before and after the exposure tests. Electron microprobe, x-ray photoelectron spectroscopy (XPS), and Auger electron surface analyses were done as needed where visual and gravimetric changes in the samples were evident. Results are reported.

Research Organization:
Sandia National Labs., Albuquerque, NM (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC04-94AL85000
OSTI ID:
10155717
Report Number(s):
SAND--94-1483C; CONF-9406181--1; ON: DE94012921; BR: GB0103012
Country of Publication:
United States
Language:
English