Authentication techniques for smart cards
Smart card systems are most cost efficient when implemented as a distributed system, which is a system without central host interaction or a local database of card numbers for verifying transaction approval. A distributed system, as such, presents special card and user authentication problems. Fortunately, smart cards offer processing capabilities that provide solutions to authentication problems, provided the system is designed with proper data integrity measures. Smart card systems maintain data integrity through a security design that controls data sources and limits data changes. A good security design is usually a result of a system analysis that provides a thorough understanding of the application needs. Once designers understand the application, they may specify authentication techniques that mitigate the risk of system compromise or failure. Current authentication techniques include cryptography, passwords, challenge/response protocols, and biometrics. The security design includes these techniques to help prevent counterfeit cards, unauthorized use, or information compromise. This paper discusses card authentication and user identity techniques that enhance security for microprocessor card systems. It also describes the analysis process used for determining proper authentication techniques for a system.
- Research Organization:
- Westinghouse Hanford Co., Richland, WA (United States)
- Sponsoring Organization:
- USDOE, Washington, DC (United States)
- DOE Contract Number:
- AC06-87RL10930
- OSTI ID:
- 10141490
- Report Number(s):
- WHC-SA--2307; CONF-9404109--2; ON: DE94009755; BR: 35AF11201/35AF11202
- Country of Publication:
- United States
- Language:
- English
Similar Records
Security Evaluation of Smart Cards and Secure Tokens: Benefits and Drawbacks for Reducing Supply Chain Risks of Nuclear Power Plants
The Smart Card concept applied to access control