Internal friction peaks due to oxygen, nitrogen and hydrogen in V-Nb alloys
Richter`s and Snoek`s original works established the existence of an anelastic relaxation produced by a stress-induced interstitial reorientation in bcc metals. This anelastic relaxation, now referred to as a Snoek peak, has been studied extensively and well characterized in the past for the interstitials carbon, nitrogen, and oxygen. The existence of a hydrogen Snoek peak in bcc metals has been a matter of some controversy, however. We have studied relaxation peaks in V, Nb, and V-Nb alloys recently. The alloys have complete mutual solubility and are of interest since they have an extremely high room temperature solid solubility for hydrogen. They also have, over a certain composition range, not shown any hydride phase precipitation at temperatures as low as 4K. Thus, if a hydrogen Snoek peak does exist, it should be found in such alloys. Indeed there is evidence now of a spectrum of hydrogen relaxation peaks below room temperature. Furthermore, due to the difference in the atomic radii of V and Nb there is a large misfit in dilute alloys of these elements. This and possibly some chemical interaction can cause trapping (or antitrapping) of the interstitials at the substitutional sites, causing solute-interstitial peaks. The present paper provides an overview of our observations regarding: (1) the effect of hydrogen on the oxygen and nitrogen Snoek peaks in pure V and Nb, (2) the oxygen relaxation peaks in V-Nb alloys, (3) the hydrogen relaxation spectrum in V-Nb alloys, and (4) the effect of oxygen on the hydrogen relaxation spectrum in V-Nb alloys.
- Research Organization:
- Ames Lab., IA (United States)
- Sponsoring Organization:
- USDOE, Washington, DC (United States)
- DOE Contract Number:
- W-7405-ENG-82
- OSTI ID:
- 10140353
- Report Number(s):
- IS-M--683; CONF-910374--2; ON: DE92012155
- Country of Publication:
- United States
- Language:
- English
Similar Records
Internal friction peaks due to oxygen, nitrogen and hydrogen in V-Nb alloys
Effect of hydrogen, deuterium and oxygen on the anelastic properties of refractory alloys