Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Development of a Hydrodynamic Model of Puget Sound and Northwest Straits

Technical Report ·
DOI:https://doi.org/10.2172/1013954· OSTI ID:1013954

The hydrodynamic model used in this study is the Finite Volume Coastal Ocean Model (FVCOM) developed by the University of Massachusetts at Dartmouth. The unstructured grid and finite volume framework, as well as the capability of wetting/drying simulation and baroclinic simulation, makes FVCOM a good fit to the modeling needs for nearshore restoration in Puget Sound. The model domain covers the entire Puget Sound, Strait of Juan de Fuca, San Juan Passages, and Georgia Strait at the United States-Canada Border. The model is driven by tide, freshwater discharge, and surface wind. Preliminary model validation was conducted for tides at various locations in the straits and Puget Sound using National Oceanic and Atmospheric Administration (NOAA) tide data. The hydrodynamic model was successfully linked to the NOAA oil spill model General NOAA Operational Modeling Environment model (GNOME) to predict particle trajectories at various locations in Puget Sound. Model results demonstrated that the Puget Sound GNOME model is a useful tool to obtain first-hand information for emergency response such as oil spill and fish migration pathways.

Research Organization:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1013954
Report Number(s):
PNNL-17161; WN0219060
Country of Publication:
United States
Language:
English

Similar Records

Multi-scale modeling of Puget Sound using an unstructured-grid coastal ocean model: from tide flats to estuaries and coastal waters
Journal Article · Thu Nov 18 23:00:00 EST 2010 · Ocean Dynamics, 60(6):1621-1637 · OSTI ID:1002184

Numerical modeling in the Strait of Juan de Fuca and Puget Sound. Technical memo. for FY-78
Technical Report · Wed Jan 31 23:00:00 EST 1979 · OSTI ID:5640245

Storm Surge Modeling in Puget Sound
Technical Report · Wed May 08 00:00:00 EDT 2019 · OSTI ID:1558622