skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Magnetic flux noise in copper oxide superconductors

Thesis/Dissertation ·
DOI:https://doi.org/10.2172/10133034· OSTI ID:10133034
 [1]
  1. Univ. of California, Berkeley, CA (United States)

Magnetic flux noise and flux creep in thin films and single crystals of YBa2Cu3O7-x, Bi2Sr2CaCu2O8+x, Tl2Ca2Ba2Cu3Ox, and TlCa2Ba2Cu3Ox are measured with a superconducting quantum interference device (SQUID). The noise power spectrum generally scales as 1/f (f is frequency) from 1 Hz to 1 kHz, increases with temperature, and decreases in higher-quality films. It is proportional to the magnetic field B in which the sample is cooled, at least in the range 0.1 mT < B < 3 mT. A model of thermally activated vortex motion is developed which explains the dependence of the noise on frequency, temperature, current, and applied magnetic field. The pinning potential is idealized as an ensemble of double wells, each with a different activation energy separating the two states. From the noise measurements, this model yields the distribution of pinning energies in the samples, the vortex hopping distance, the number density of mobile vortices, and the restoring force on a vortex at a typical pinning site. The distribution of pinning energies in YBa2Cu3O7-x shows a broad peak below 0.1 eV. The small ambient magnetic field, and the detection of noise even in the absence of a driving force, insure that the measured pinning energies are characteristic of isolated vortices near thermal equilibrium. The observed vortex density in fields much less than 0.1 mT is too large to be explained by the ambient field, suggesting a mechanism intrinsic to the sample which produces trapped vortices.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
DOE Contract Number:
AC03-76SF00098
OSTI ID:
10133034
Report Number(s):
LBL-31553; ON: DE92010299
Resource Relation:
Other Information: TH: Thesis (Ph.D.); PBD: Nov 1991
Country of Publication:
United States
Language:
English