skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Deep-UV Raman spectroscopic analysis of structure and dissolution rates of silica-rich sodium borosilicate glasses

Journal Article · · Journal of Non-crystalline Solids, 357(10):2170-2177

As part of ongoing studies to evaluate the relationships between structural variations in silicate glasses and rates of glass dissolution in aqueous media, molecular structures present in sodium borosilicate glasses of composition Na2O.xB2O3.(3-x)SiO2, with x 1 (Na2O/B2O3 ratio 1), were analyzed using deep-UV Raman spectroscopy. The results were quantified in terms of the fraction of SiO4 tetrahedra with one non-bridging oxygen (Q3) and then correlated with Na2O and B2O3 content. Increasing Na2O was found to raise the fraction of Q3 units in the glasses systematically, in agreement with studies on related glasses, and, as long as the value of x was not too high, contribute to higher rates of dissolution in single pass flow-through testing. The finding was obtained across more than one series of silica-rich glasses prepared for independent dissolution studies. In contrast, dissolution rates were less strongly determined by the Q3 fraction when the value of x was near unity and appeared to grow larger upon further reduction of the Q3 fraction. The results were interpreted to indicate the increasingly important role of network hydrolysis in the glass dissolution mechanism as the BO4 tetrahedron replaces the Q3 unit as the charge-compensating structure for Na+ ions. Finally, the use of deep-UV Raman spectroscopy was found to be advantageous in studying finely powdered glasses in cases where visible Raman spectroscopy suffered from weak Raman scattering and fluorescence interference.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1012874
Report Number(s):
PNNL-SA-76265; JNCSBJ; 40084; 830403000; TRN: US201110%%394
Journal Information:
Journal of Non-crystalline Solids, 357(10):2170-2177, Vol. 357, Issue 10; ISSN 0022-3093
Country of Publication:
United States
Language:
English