skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A real time status monitor for transistor bank driver power limit resistor in boost injection kicker power supply

Abstract

For years suffering of Booster Injection Kicker transistor bank driver regulator troubleshooting, a new real time monitor system has been developed. A simple and floating circuit has been designed and tested. This circuit monitor system can monitor the driver regulator power limit resistor status in real time and warn machine operator if the power limit resistor changes values. This paper will mainly introduce the power supply and the new designed monitoring system. This real time resistor monitor circuit shows a useful method to monitor some critical parts in the booster pulse power supply. After two years accelerator operation, it shows that this monitor works well. Previously, we spent a lot of time in booster machine trouble shooting. We will reinstall all 4 PCB into Euro Card Standard Chassis when the power supply system will be updated.

Authors:
; ;
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL) Relativistic Heavy Ion Collider
Sponsoring Org.:
DOE - Office Of Science
OSTI Identifier:
1012586
Report Number(s):
BNL-94140-2011-CP
R&D Project: KBCH139; 18037; KB0202011; TRN: US1102328
DOE Contract Number:
DE-AC02-98CH10886
Resource Type:
Conference
Resource Relation:
Conference: 2011 Particle Accelerator Conference (PAC'11); New York, NY; 20110328 through 20110401
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS; ACCELERATORS; AVAILABILITY; MONITORING; MONITORS; RESISTORS; TRANSISTORS; relativistic heavy ion collider

Citation Formats

Mi, J., Tan, Y., and Zhang, W.. A real time status monitor for transistor bank driver power limit resistor in boost injection kicker power supply. United States: N. p., 2011. Web.
Mi, J., Tan, Y., & Zhang, W.. A real time status monitor for transistor bank driver power limit resistor in boost injection kicker power supply. United States.
Mi, J., Tan, Y., and Zhang, W.. 2011. "A real time status monitor for transistor bank driver power limit resistor in boost injection kicker power supply". United States. doi:. https://www.osti.gov/servlets/purl/1012586.
@article{osti_1012586,
title = {A real time status monitor for transistor bank driver power limit resistor in boost injection kicker power supply},
author = {Mi, J. and Tan, Y. and Zhang, W.},
abstractNote = {For years suffering of Booster Injection Kicker transistor bank driver regulator troubleshooting, a new real time monitor system has been developed. A simple and floating circuit has been designed and tested. This circuit monitor system can monitor the driver regulator power limit resistor status in real time and warn machine operator if the power limit resistor changes values. This paper will mainly introduce the power supply and the new designed monitoring system. This real time resistor monitor circuit shows a useful method to monitor some critical parts in the booster pulse power supply. After two years accelerator operation, it shows that this monitor works well. Previously, we spent a lot of time in booster machine trouble shooting. We will reinstall all 4 PCB into Euro Card Standard Chassis when the power supply system will be updated.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2011,
month = 3
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • This paper describes the pulse modulator power supplies used to drive the kicker magnets that inject the muon beam into the g-2 storage ring that has been built at Brookhaven. Three modulators built into coaxial structures consisting of a series circuit of an energy storage capacitor, damping resistor and a fast thyratron switch are used to energize three magnets that kick the beam into the proper orbit. A 100 kV charging power supply is used to charge the capacitor to 95 kV. the damping resistor shapes the magnet current waveform to a 450 nanosecond half-sine to match the injection requirements.more » this paper discusses the modulator design, construction and operation.« less
  • This paper describes the pulse modulator power supplies used to drive the kicker magnets that inject the muon beam into the 8-2 storage ring that has been built at Brookhaven National Laboratory. Three modulators built into coaxial structures consisting of a series circuit of an energy storage capacitor, a damping resistor and a fast thyratron switch are used to energize three magnets that kick the beam into the proper orbit. A 100 kV charging power supply is used to charge the capacitor to 95kV. The damping resistor shapes the magnet current waveform to a 450 nanosecond half-sine to match themore » injection requirements. This paper discusses the modulator design, construction and operation.« less
  • Alternative methods of connecting similar mutually coupled coils to their power supplies and dump resistors are investigated. The circuits are evaluated for both operating and fault conditions. The factors considered are the voltage to ground during a dump, short circuits, open circuits, quenches, and failure of the protection system to detect a quench. Of particular interest are the currents induced in coils that remain superconducting when one or more coils quench. The alternative connections include combined power supplies, individual dump resistors, combined resistors and series and parallel dump resistors. A new circuit that contains coupling resistors is proposed. The couplingmore » resistors do not affect normal fast dumps but reduce the peak induced currents while also reducing the energy rating of the dump resistors. Another novel circuit, the series circuit with diodes, is discussed. The MFTF-B central-cell solenoids are used as an example.« less
  • To inject beams from the positron accumulator ring (PAR) into the synchrotron, a pulsed kicker magnet is used. The specifications of this kicker magnet and the power supply unit are listed and discussed in this report.
  • Over the past several years, Fermilab has been operating with a single turn proton abort system in both the superconducting Tevatron and the conventional Main Ring. The abort kicker power supply for this system discharges a lumped capacitance into the inductive magnet load, causing the beam to enter the abort channel. The characteristics of this current waveform are defined by the requirements of the machine operation. The standard fixed target running mode calls for 12 booster batches of beam which leaves a rotating gap in the beam of about1.8 ..mu..s. The current waveform is required to rise to 90% ofmore » I /SUB max/ in this time to avoid beam loss from partially deflected beam. Aperture limitations in both the accelerator and the abort channel demand that the current in the magnets stays above this 90% I for the 21 ..mu..s needed to ensure all the beam has /SUP max/ left the machine. The 25 mm displacement needed to cleanly enter the abort channel at 1 TeV corresponds to a maximum current in each of the 4 modules of about20 kA. Similar constraints are needed for the Main Ring and Tevatron antiproton abort systems. A unique feature of this design is the high voltage, high current diode assembly used to clip the recharge of the capacitor bank. This allows the current to decay slowly with the L/R time constant of the magnet and diode series combination. Special attention will be given to the diode characteristics needed for this passive switching element. Operational experience and proposed upgrades will be given for the two operational systems.« less