Towards the photoreduction of CO{sub 2} with Ni(bpy){sub n}{sup 2+} complexes
When an acetonitrile solution containing Ni(bpy){sub 3}{sup 2+}, trithylamine and CO{sub 2} is irradiated at 313 nm, CO is produced with a quantum yield {approximately} 0.1% (defined as CO produced/photons absorbed). Flash photolysis, electrochemistry, and pulse radiolysis experiments provide evidence for the formation of Ni{sup I}(bpy){sub 2+}, as an intermediate, in the photochemical Ni(bpy){sub 3}{sup 2+}/TEA/CO{sub 2} system. Although Ni{sup 0}(bpy){sub 2} does react with CO{sub 2}, Ni{sup I}(bpy){sub 2+} seems unreactive toward CO{sub 2} addition. The x-ray structure of [Ni{sub 3}(bpy){sub 6}](ClO{sub 4}), which crystallize as blue-violet needles, reveals the existence of a dimer in the solid. UV-vis spectra also indicate that reduced Ni(bpy){sub 3}{sup 2+} solutions contain Ni{sup I}(bpy){sub 2+}, Ni{sup 0}(bpy){sub 2} and [Ni(bpy){sub 2}]{sub 2} complexes in equilibrium.
- Research Organization:
- Brookhaven National Lab., Upton, NY (United States)
- Sponsoring Organization:
- USDOE, Washington, DC (United States)
- DOE Contract Number:
- AC02-76CH00016
- OSTI ID:
- 101254
- Report Number(s):
- BNL--62114; ON: DE95016719
- Country of Publication:
- United States
- Language:
- English
Similar Records
Elucidating the mechanism of photochemical CO2 reduction to CO using a cyanide-bridged di-manganese complex
Excited-state photoelectrochemical cells for the generation of H/sub 2/ and O/sub 2/ based on Ru(bpy)/sub 3//sup 2 +/