skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Can an Excess Electron Localise on a Purine Moiety in the Adenine-thymine Watson-Crick Base Pair? A Computational Study

Abstract

The electron affinity and the propensity to electron-induced proton transfer (PT) of hydrogen-bonded complexes between the Watson–Crick adenine–thymine pair (AT) and simple organic acid (HX), attached to adenine in the Hoogsteen-type configuration, were studied at the B3LYP/6-31+G** level. Although the carboxyl group is deprotonated at physiological pH, its neutral form, COOH, resembles the peptide bond or the amide fragment in the side chain of asparagine (Asn) or glutamine (Gln). Thus, these complexes mimic the interaction between the DNA environment (e.g., proteins) and nucleobase pairs incorporated in the biopolymer. Electron attachment is thermodynamically feasible and adiabatic electron affinities range from 0.41 to 1.28 eV, while the vertical detachment energies of the resulting anions span the range of 0.39 –2.88 eV. Low-energy activation barriers separate the anionic minima: aHX(AT) from the more stable single-PT anionic geometry, aHX(AT)-SPT, and aHX(AT)-SPT from the double-PT anionic geometry, aHX(AT)-DPT. Interaction between the adenine of the Watson–Crick AT base pair with an acidic proton donor probably counterbalances the larger EA of isolated thymine, as SOMO is almost evenly delocalized over both types of nucleic bases in the aHX(AT) anions. Moreover, as a result of PT the excess electron localizes entirely on adenine. Thus, in DNA interacting withmore » its physiological environment, damage induced by low-energy electrons could begin, contrary to the current view, with the formation of purine anions, which are not formed in isolated DNA because of the greater stability of anionic pyrimidines.« less

Authors:
; ; ;
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org.:
USDOE
OSTI Identifier:
1012313
DOE Contract Number:
AC05-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: International Journal of Quantum Chemistry, 107(12):2224-2232; Journal Volume: 107; Journal Issue: 12
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; 60 APPLIED LIFE SCIENCES; ADENINES; AFFINITY; AMIDES; ANIONS; ASPARAGINE; CONFIGURATION; DNA; ELECTRON ATTACHMENT; ELECTRONS; GEOMETRY; GLUTAMINE; ORGANIC ACIDS; PEPTIDES; PROTEINS; PROTONS; PURINES; PYRIMIDINES; STABILITY; THYMINE; Environmental Molecular Sciences Laboratory

Citation Formats

Mazurkiewicz, Kamil, Haranczyk, Maciej, Gutowski, Maciej S., and Rak, Janusz. Can an Excess Electron Localise on a Purine Moiety in the Adenine-thymine Watson-Crick Base Pair? A Computational Study. United States: N. p., 2007. Web. doi:10.1002/qua.21359.
Mazurkiewicz, Kamil, Haranczyk, Maciej, Gutowski, Maciej S., & Rak, Janusz. Can an Excess Electron Localise on a Purine Moiety in the Adenine-thymine Watson-Crick Base Pair? A Computational Study. United States. doi:10.1002/qua.21359.
Mazurkiewicz, Kamil, Haranczyk, Maciej, Gutowski, Maciej S., and Rak, Janusz. Tue . "Can an Excess Electron Localise on a Purine Moiety in the Adenine-thymine Watson-Crick Base Pair? A Computational Study". United States. doi:10.1002/qua.21359.
@article{osti_1012313,
title = {Can an Excess Electron Localise on a Purine Moiety in the Adenine-thymine Watson-Crick Base Pair? A Computational Study},
author = {Mazurkiewicz, Kamil and Haranczyk, Maciej and Gutowski, Maciej S. and Rak, Janusz},
abstractNote = {The electron affinity and the propensity to electron-induced proton transfer (PT) of hydrogen-bonded complexes between the Watson–Crick adenine–thymine pair (AT) and simple organic acid (HX), attached to adenine in the Hoogsteen-type configuration, were studied at the B3LYP/6-31+G** level. Although the carboxyl group is deprotonated at physiological pH, its neutral form, COOH, resembles the peptide bond or the amide fragment in the side chain of asparagine (Asn) or glutamine (Gln). Thus, these complexes mimic the interaction between the DNA environment (e.g., proteins) and nucleobase pairs incorporated in the biopolymer. Electron attachment is thermodynamically feasible and adiabatic electron affinities range from 0.41 to 1.28 eV, while the vertical detachment energies of the resulting anions span the range of 0.39 –2.88 eV. Low-energy activation barriers separate the anionic minima: aHX(AT) from the more stable single-PT anionic geometry, aHX(AT)-SPT, and aHX(AT)-SPT from the double-PT anionic geometry, aHX(AT)-DPT. Interaction between the adenine of the Watson–Crick AT base pair with an acidic proton donor probably counterbalances the larger EA of isolated thymine, as SOMO is almost evenly delocalized over both types of nucleic bases in the aHX(AT) anions. Moreover, as a result of PT the excess electron localizes entirely on adenine. Thus, in DNA interacting with its physiological environment, damage induced by low-energy electrons could begin, contrary to the current view, with the formation of purine anions, which are not formed in isolated DNA because of the greater stability of anionic pyrimidines.},
doi = {10.1002/qua.21359},
journal = {International Journal of Quantum Chemistry, 107(12):2224-2232},
number = 12,
volume = 107,
place = {United States},
year = {Tue Apr 17 00:00:00 EDT 2007},
month = {Tue Apr 17 00:00:00 EDT 2007}
}
  • 5-Hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) form during active demethylation of 5-methylcytosine (5mC) and are implicated in epigenetic regulation of the genome. They are differentially processed by thymine DNA glycosylase (TDG), an enzyme involved in active demethylation of 5mC. Three modified Dickerson–Drew dodecamer (DDD) sequences, amenable to crystallographic and spectroscopic analyses and containing the 5'-CG-3' sequence associated with genomic cytosine methylation, containing 5hmC, 5fC, or 5caC placed site-specifically into the 5'-T 8X 9G 10-3' sequence of the DDD, were compared. The presence of 5caC at the X9 base increased the stability of the DDD, whereas 5hmC or 5fC didmore » not. Both 5hmC and 5fC increased imino proton exchange rates and calculated rate constants for base pair opening at the neighboring base pair A 5:T 8, whereas 5caC did not. At the oxidized base pair G 4:X 9, 5fC exhibited an increase in the imino proton exchange rate and the calculated k op. In all cases, minimal effects to imino proton exchange rates occurred at the neighboring base pair C 3:G 10. No evidence was observed for imino tautomerization, accompanied by wobble base pairing, for 5hmC, 5fC, or 5caC when positioned at base pair G 4:X 9; each favored Watson–Crick base pairing. However, both 5fC and 5caC exhibited intranucleobase hydrogen bonding between their formyl or carboxyl oxygens, respectively, and the adjacent cytosine N 4 exocyclic amines. The lesion-specific differences observed in the DDD may be implicated in recognition of 5hmC, 5fC, or 5caC in DNA by TDG. Furthermore, they do not correlate with differential excision of 5hmC, 5fC, or 5caC by TDG, which may be mediated by differences in transition states of the enzyme-bound complexes.« less
    Cited by 21
  • 5-Hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) form during active demethylation of 5-methylcytosine (5mC) and are implicated in epigenetic regulation of the genome. They are differentially processed by thymine DNA glycosylase (TDG), an enzyme involved in active demethylation of 5mC. Three modified Dickerson–Drew dodecamer (DDD) sequences, amenable to crystallographic and spectroscopic analyses and containing the 5'-CG-3' sequence associated with genomic cytosine methylation, containing 5hmC, 5fC, or 5caC placed site-specifically into the 5'-T 8X 9G 10-3' sequence of the DDD, were compared. The presence of 5caC at the X9 base increased the stability of the DDD, whereas 5hmC or 5fC didmore » not. Both 5hmC and 5fC increased imino proton exchange rates and calculated rate constants for base pair opening at the neighboring base pair A 5:T 8, whereas 5caC did not. At the oxidized base pair G 4:X 9, 5fC exhibited an increase in the imino proton exchange rate and the calculated k op. In all cases, minimal effects to imino proton exchange rates occurred at the neighboring base pair C 3:G 10. No evidence was observed for imino tautomerization, accompanied by wobble base pairing, for 5hmC, 5fC, or 5caC when positioned at base pair G 4:X 9; each favored Watson–Crick base pairing. However, both 5fC and 5caC exhibited intranucleobase hydrogen bonding between their formyl or carboxyl oxygens, respectively, and the adjacent cytosine N 4 exocyclic amines. The lesion-specific differences observed in the DDD may be implicated in recognition of 5hmC, 5fC, or 5caC in DNA by TDG. Furthermore, they do not correlate with differential excision of 5hmC, 5fC, or 5caC by TDG, which may be mediated by differences in transition states of the enzyme-bound complexes.« less
  • The synthesis of a new, noncovalent anthracene-dimethylaniline dyad (ensemble I) held together via guanosine-cytidine Watson-Crick base-pairing interactions is reported. Upon excitation at 420 nm, photoinduced electron-transfer from the dimethylaniline donor to the singlet excited state of the anthracene acceptor occurs, as inferred from a combination of time-resolved fluorescence quenching and transient absorption measurements. In toluene at room temperature, the rate constants for photoinduced intraensemble electron-transfer and subsequent back-electron-transfer (charge recombination) are k{sub CS} = (3.5 {+-} 0.03) x 10{sup 10} s{sup -1} and k{sub CR} = (1.42 {+-} 0.03) x 10{sup 9} s{sup -1}, respectively.