Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Pitting, galvanic, and long-term corrosion studies on candidate container alloys for the Tuff Repository

Technical Report ·
DOI:https://doi.org/10.2172/10121081· OSTI ID:10121081
; ;  [1]
  1. Cortest Columbus Technologies, OH (United States)
Contest Columbus Technologies, Inc. (CC Technologies) investigated the long-term performance of container materials for high-level radioactive waste packages as part of the information needed by the Nuclear Regulatory Commission to assess the Department of Energy`s application to construct a geologic repository for the high-level radioactive waste. The scope of work focused on the Tuff Repository and employed short-term techniques, such as electrochemical and mechanical techniques to examine a wide range of possible failure modes. Two classes of alloys were evaluated for use as container materials for the Tuff Repository; Fe-Cr-Ni alloys and copper-base alloys. The candidate Fe-Cr-Ni alloys were Type 304L Stainless Steel (Alloy 304L) and Incoloy Alloy 825 (Alloy 825). The candidate copper-base alloys were CDA 102 Copper (Alloy CDA 102) and CDA 715 Copper-3D Nickel (Alloy CDA 715). The corrosion testing was performed in a simulated J-13 well water and in solutions selected from an experimental matrix from Task 2 of the program. This report summarizes the results of Task 4 (Pitting Studies), Task 6 (Other Failure Modes) and Task 7 (Long-Term Exposures) of the program. Pit-initiation studies, performed in Task 4, focused on anomalous Cyclic Potentiodynamic Polarization (CPP) behavior of the copper-base alloys reported in Task 2 of the program. Pit propagation studies were performed on Alloy CDA 102 in Task A of the program. Two types of galvanic corrosion studies were performed in Task 6 of the program; thermogalvanic couples and borehole linear-container interactions. In the thermogalvanic couples tests, the effect of temperature variation on the surface of the container on acceleration of corrosion was evaluated for two alloys; Alloy CDA 102 and Alloy 304L. Long-term immersion tests were conducted in Task 7 of the program.
Research Organization:
Nuclear Regulatory Commission, Washington, DC (United States). Div. of Regulatory Applications; Cortest Columbus Technologies, Inc., OH (United States)
Sponsoring Organization:
USNRC
OSTI ID:
10121081
Report Number(s):
NUREG/CR--5709; ON: TI92007822
Country of Publication:
United States
Language:
English