skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Atmospheric and dispersion modeling in areas of highly complex terrain employing a four-dimensional data assimilation technique

Conference ·
OSTI ID:10107671

The results of this study indicate that the current data assimilation technique can have a positive impact on the mesoscale flow fields; however, care must be taken in its application to grids of relatively fine horizontal resolution. Continuous FDDA is a useful tool in producing high-resolution mesoscale analysis fields that can be used to (1) create a better initial conditions for mesoscale atmospheric models and (2) drive transport models for dispersion studies. While RAMS is capable of predicting the qualitative flow during this evening, additional experiments need to be performed to improve the prognostic forecasts made by RAMS and refine the FDDA procedure so that the overall errors are reduced even further. Despite the fact that a great deal of computational time is necessary in executing RAMS and LPDM in the configuration employed in this study, recent advances in workstations is making applications such as this more practical. As the speed of these machines increase in the next few years, it will become feasible to employ prognostic, three-dimensional mesoscale/transport models to routinely predict atmospheric dispersion of pollutants, even to highly complex terrain. For example, the version of RAMS in this study could be run in a ``nowcasting`` model that would continually assimilate local and regional observations as soon as they become available. The atmospheric physics in the model would be used to determine the wind field where no observations are available. The three-dimensional flow fields could be used as dynamic initial conditions for a model forecast. The output from this type of modeling system will have to be compared to existing diagnostic, mass-consistent models to determine whether the wind field and dispersion forecasts are significantly improved.

Research Organization:
Westinghouse Savannah River Co., Aiken, SC (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC09-89SR18035
OSTI ID:
10107671
Report Number(s):
WSRC-MS-93-502; CONF-940115-16; ON: DE94004041; TRN: 94:008403
Resource Relation:
Conference: 8. Joint conference on applications of air pollution meterology. 74. American Meteorological Society annual meeting,Nashville, TN (United States),23-28 Jan 1994; Other Information: PBD: [1994]
Country of Publication:
United States
Language:
English