skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The study of parametric instabilities in NIF-scale plasmas on Nova

Conference ·
OSTI ID:101067

At the same time we experimentally reproduced the plasma conditions expected within the NIF using plasmas produced by the Nova laser. The plasmas were created by irradiating a thin walled gas balloon or a sealed hohlraum containing of order one atmosphere of a low-Z gas (e.g. C{sub 5}H{sub 12}, C{sub 5}D{sub 12} or CO{sub 2}). When the gas is ionized and heated the resultant plasmas are homogeneous, and of high density ({approximately}10{sup 21} electron/cm{sup 3}) and temperature ({approximately}3 keV) with large scale density scale lengths ({approximately}2 mm). Nine of the Nova beams were used to produce the plasma, the tenth beam was configured as an interaction beam that was sent through the performed plasma after a delay of order 500 psec. The SRS and SBS scattered from the plasma, together with the effects of the plasma on the transmitted beam, were studied as a function of the interaction beam intensity, beam smoothing and plasma constituents. The interaction beam was smoothed by using radon phase plates (RPPs), and 4 different colors within the f/8 beam to mimic the NIF laser architecture. The 4-color set-up divided the f/8 beam in to 4 separate quadrants each of which had its wavelength shifted relative to the other quadrants. The wavelength separation of the colors was approximately 1.4{Angstrom} at 3{omega}. Since each beam quadrant could have its frequency conversion crystals individually tuned for its wavelength, the 4-color scheme approximated ``bandwidth`` on the interaction beam without losing 3{omega} conversion efficiency. We have also studied the use of a laser bandwidth of approximately 0.7{Angstrom} and smoothing by Spectral Dispersion (SSD) with all of the quadrants set at the same color, to further reduce the reflected SBS. These studies were performed with both f/4.3 and f/8 interaction beam focusing.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
101067
Report Number(s):
UCRL-JC-118524; CONF-940933-45; ON: DE95014685; TRN: 95:020286
Resource Relation:
Conference: 15. international conference on plasma physics and controlled nuclear fusion research, Madrid (Spain), 26 Sep - 1 Oct 1994; Other Information: PBD: 26 Sep 1994
Country of Publication:
United States
Language:
English