Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Effects of Temperature on Structure and Mobility of the <100> Edge Dislocation in Body-Centred Cubic Iron

Journal Article · · Acta Materialia
 [1];  [2];  [3]
  1. Belgian Nuclear Research Centre, SCK-CEN
  2. ORNL
  3. University of Liverpool
Dislocation segments with Burgers vector b = <1 0 0> are formed during deformation of body-centred-cubic (bcc) metals by the interaction between dislocations with b = 1/2<1 1 1>. Such segments are also created by reactions between dislocations and dislocation loops in irradiated bcc metals. The obstacle resistance produced by these segments on gliding dislocations is controlled by their mobility, which is determined in turn by the atomic structure of their cores. The core structure of a straight <1 0 0> edge dislocation is investigated here by atomic-scale computer simulation for {alpha}-iron using three different interatomic potentials. At low temperature the dislocation has a non-planar core consisting of two 1/2<1 1 1> fractional dislocations with atomic disregistry spread on planes inclined to the main glide plane. Increasing temperature modifies this core structure and so reduces the critical applied shear stress for glide of the <1 0 0> dislocation. It is concluded that the response of the <1 0 0> edge dislocation to temperature or applied stress determines specific reaction pathways occurring between a moving dislocation and 1/2<1 1 1> dislocation loops. The implications of this for plastic flow in unirradiated and irradiated ferritic materials are discussed and demonstrated by examples.
Research Organization:
Oak Ridge National Laboratory (ORNL)
Sponsoring Organization:
SC USDOE - Office of Science (SC)
DOE Contract Number:
AC05-00OR22725
OSTI ID:
1009500
Journal Information:
Acta Materialia, Journal Name: Acta Materialia Journal Issue: 7 Vol. 58; ISSN 1359-6454
Country of Publication:
United States
Language:
English

Similar Records

Competing Processes in Reactions between an Edge Dislocation and Dislocation Loops in a Body-Centred Cubic Metal
Journal Article · Thu Dec 31 23:00:00 EST 2009 · Scripta Materialia · OSTI ID:1009501

Core structure, dislocation energy and Peierls stress for 1/3?11 0? edge dislocations with (0001) and {1 00} slip planes in α-Zr.
Journal Article · Fri Dec 31 23:00:00 EST 2004 · Materials Science and Engineering A · OSTI ID:1003356

Reactions between a <111> screw dislocation and <100> interstitial dislocation loops in alpha-iron modelled at atomic-scale
Journal Article · Sun Feb 28 23:00:00 EST 2010 · Philosophical Magazine · OSTI ID:1009499