skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Morphological characterization of carbon-nanofiber-reinforced epoxy nanocomposites using ultra-small angle scattering

Conference ·
OSTI ID:1008968

Studies of the properties of nanocomposites reinforced with vapor-grown carbon nanofibers (VGCFs) can be found throughout the literature. Electrical, mechanical, viscoelastic, and rheological properties are just a few of the characteristics that have been well discussed. Although these properties depend on morphology, morphological characterization is rare. Due to its 2-dimensional nature, microscopy is of limited value when analyzing network morphologies. This work will show how the characterization of the three-dimensional geometry and network formation of VGCFs can be determined using ultra-small angle scattering techniques. Ultra-small angle x-ray and neutron scattering (USAXS and USANS) were used to characterize the morphology of carbon nanofibers suspended in epoxy. Using a simplified tube model, we estimate the dimensions of suspended fibers. The assumption of tubular fibers accounts for the increased surface area observed with USAXS that is not accounted for using a solid rod model. Furthermore, USANS was used to search for a structural signature associated with the electrical percolation threshold. USANS extends to longer dimensional scales than USAXS, which measures a smaller range of momentum transfer. To determine the electrical percolation threshold, AC impedance spectroscopy was employed to verify that an electrically conductive, percolated network forms at VGCNF loadings of 0.8% < CNF wt% < 1.2%. These values correlate with the USANS data, where a morphological transition is seen at {approx}1.2% loading.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Organization:
USDOE
OSTI ID:
1008968
Resource Relation:
Conference: AIChE Annual Meeting 2005;Oct. 30-Nov. 4, 2005;Cincinnati, OH, United States
Country of Publication:
United States
Language:
ENGLISH