Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane

Journal Article · · Nature
OSTI ID:1008491

Particulate methane monooxygenase (pMMO) is an integral membrane metalloenzyme that catalyses the conversion of methane to methanol. Knowledge of how pMMO performs this extremely challenging chemistry may have an impact on the use of methane as an alternative energy source by facilitating the development of new synthetic catalysts. We have determined the structure of pMMO from the methanotroph Methylococcus capsulatus (Bath) to a resolution of 2.8 {angstrom}. The enzyme is a trimer with an {alpha}{sub 3}{beta}{sub 3}{gamma}{sub 3} polypeptide arrangement. Two metal centres, modelled as mononuclear copper and dinuclear copper, are located in soluble regions of each pmoB subunit, which resembles cytochrome c oxidase subunit II. A third metal centre, occupied by zinc in the crystal, is located within the membrane. The structure provides new insight into the molecular details of biological methane oxidation.

Research Organization:
Advanced Photon Source (APS), Argonne National Laboratory (ANL), Argonne, IL (US)
Sponsoring Organization:
USDOE
OSTI ID:
1008491
Journal Information:
Nature, Journal Name: Nature Journal Issue: 03, 2005 Vol. 434
Country of Publication:
United States
Language:
ENGLISH