A bio-synthetic interface for discovery of viral entry mechanisms.
Understanding and defending against pathogenic viruses is an important public health and biodefense challenge. The focus of our LDRD project has been to uncover the mechanisms enveloped viruses use to identify and invade host cells. We have constructed interfaces between viral particles and synthetic lipid bilayers. This approach provides a minimal setting for investigating the initial events of host-virus interaction - (i) recognition of, and (ii) entry into the host via membrane fusion. This understanding could enable rational design of therapeutics that block viral entry as well as future construction of synthetic, non-proliferating sensors that detect live virus in the environment. We have observed fusion between synthetic lipid vesicles and Vesicular Stomatitis virus particles, and we have observed interactions between Nipah virus-like particles and supported lipid bilayers and giant unilamellar vesicles.
- Research Organization:
- Sandia National Laboratories
- Sponsoring Organization:
- USDOE
- DOE Contract Number:
- AC04-94AL85000
- OSTI ID:
- 1008149
- Report Number(s):
- SAND2010-6472
- Country of Publication:
- United States
- Language:
- English
Similar Records
Towards understanding of Nipah virus attachment protein assembly and the role of protein affinity and crowding for membrane curvature events.
Biosynthesis of Sindbis virus and vesicular stomatitis virus membrane glycoproteins