Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Fluorescence x-ray absorption fine structure studies of Fe-Ni-S and Fe-Ni-Si melts to 1600 K

Journal Article · · Phys. Rev. B

We report Ni K-edge fluorescence x-ray absorption fine structure spectra (XAFS) for Fe{sub 0.75}Ni{sub 0.05}S{sub 0.20} and Fe{sub 0.75}Ni{sub 0.05}Si{sub 0.20} ternary alloys from room temperature up to 1600 K. A high-temperature furnace designed for these studies incorporates two x-ray transparent windows and enables both a vertical orientation of the molten sample and a wide opening angle, so that XAFS can be measured in the fluorescence mode with a detector at 90{sup o} with respect to the incident x-ray beam. An analysis of the Ni XAFS data for these two alloys indicates different local structural environments for Ni in Fe{sub 0.75}Ni{sub 0.05}S{sub 0.20} and Fe{sub 0.75}Ni{sub 0.05}Si{sub 0.20} melts, with more Ni-Si coordination than Ni-S coordination persisting from room temperature through melting. These results suggest that light elements such as S and Si may impact the structural and chemical properties of Fe-Ni alloys with a composition similar to the earth's core.

Research Organization:
Advanced Photon Source (APS), Argonne National Laboratory (ANL), Argonne, IL (US)
Sponsoring Organization:
USDOE
OSTI ID:
1006581
Journal Information:
Phys. Rev. B, Journal Name: Phys. Rev. B Journal Issue: 2008 Vol. 77; ISSN 1098-0121
Country of Publication:
United States
Language:
ENGLISH