Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Structural Insight on the Mechanism of Regulation of the MarR Family of Proteins: High-Resolution Crystal Structure of a Transcriptional Repressor from Methanobacterium thermoautotrophicum

Journal Article · · J. Mol. Biol.

Transcriptional regulators belonging to the MarR family are characterized by a winged-helix DNA binding domain. These transcriptional regulators regulate the efflux and influx of phenolic agents in bacteria and archaea. In Escherichia coli, MarR regulates the multiple antibiotic resistance operon and its inactivation produces a multiple antibiotic resistance phenotype. In some organisms, active efflux of drug compounds will produce a drug resistance phenotype, whereas in other organisms, active influx of chlorinated hydrocarbons results in their rapid degradation. Although proteins in the MarR family are regulators of important biological processes, their mechanism of action is not well understood and structural information about how phenolic agents regulate the activity of these proteins is lacking. This article presents the three-dimensional structure of a protein of the MarR family, MTH313, in its apo form and in complex with salicylate, a known inactivator. A comparison of these two structures indicates that the mechanism of regulation involves a large conformational change in the DNA binding lobe. Electrophoretic mobility shift assay and biophysical analyses further suggest that salicylate inactivates MTH313 and prevents it from binding to its promoter region.

Research Organization:
Advanced Photon Source (APS), Argonne National Laboratory (ANL), Argonne, IL (US)
Sponsoring Organization:
USDOE
OSTI ID:
1006547
Journal Information:
J. Mol. Biol., Journal Name: J. Mol. Biol. Journal Issue: (3) ; 03, 2008 Vol. 377; ISSN JMOBAK; ISSN 0022-2836
Country of Publication:
United States
Language:
ENGLISH