skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Three-dimensional textural and compositional analysis of particle tracks and fragmentation history in aerogel

Journal Article · · Meteorit. Planet Sci.

We report analyses of aerogel tracks using (1) synchrotron X-ray computed microtomography (XRCMT), (2) laser confocal scanning microscopy (LCSM), and (3) synchrotron radiation X-ray fluorescence (SRXRF) of particles and their paths resulting from simulated hypervelocity impacts (1-2), and a single {approx}1 mm aerogel track from the Stardust cometary sample collector (1-3). Large aerogel pieces can be imaged sequentially, resulting in high spatial resolution images spanning many tomographic fields of view ('lambda-tomography'). We report calculations of energy deposited, and tests on aromatic hydrocarbons showing no alteration in tomography experiments. Imaging at resolutions from -17 to -1 micron/pixel edge (XRCMT) and to <100 nm/pixel edge (LCSM) illustrates track geometry and interaction of particles with aerogel, including rifling, particle fragmentation, and final particle location. We present a 3-D deconvolution method using an estimated point-spread function for aerogel, allowing basic corrections of LCSM data for axial distortion. LCSM allows rapid, comprehensive, non-destructive, high information return analysis of tracks in aerogel keystones, prior to destructive grain extraction. SRXRF with LCSM allows spatial correlation of grain size, chemical, and mineralogical data. If optical methods are precluded in future aerogel capture missions, XRCMT is a viable 3D imaging technique. Combinations of these methods allow for complete, nondestructive, quantitative 3-D analysis of captured materials at high spatial resolution. This data is fundamental to understanding the hypervelocity particle-aerogel interaction histories of Stardust grains.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Organization:
USDOE
OSTI ID:
1006111
Journal Information:
Meteorit. Planet Sci., Vol. 44, Issue (10) ; 11, 2009; ISSN 1086-9379
Country of Publication:
United States
Language:
ENGLISH