skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Correlation of the energy product with evolution of the nanostructure in Y,Dy,Nd-(Fe,Co)-B magnetic alloy

Journal Article · · J. Appl. Phys.
DOI:https://doi.org/10.1063/1.3067539· OSTI ID:1005755

The devitrification behavior of nanocrystalline MRE{sub 2}(Fe,Co){sub 14}B+ZrC (MRE = Nd+Y+Dy) was studied using differential scanning calorimetry (DSC), synchrotron high temperature x-ray diffraction, and analytical transmission electron microscopy (TEM) techniques. Alloy ribbons were melt spun at 25 m/s to obtain an amorphous structure. Optimum hard magnetic properties (B{sub r} = 7.2 kG, H{sub c} = 12.7 kOe and (BH){sub max} = 10.8 MG Oe) were obtained in ribbons annealed at 750 C for 15 min. A reduced annealing temperature of 638 C and holding time from 0 to 11 min were chosen based on DSC analysis. Large changes in both microstructure and hard magnetic properties were found in a narrow window of annealing time, 4.5-6 min, resulting in a dramatic increase in energy product, remanence and coercivity: 0.96 MG Oe, 5.2 kG, 2.7 kOe to 5.7 MG Oe, 7.2 kG, 8.5 kOe for (BH){sub max}, B{sub r} and H{sub c}, respectively. Energy dispersive x-ray spectroscopy and energy filtered TEM analyses indicate that Zr- and C-rich particles ({approx} 5 nm) and thin grain boundary layers (1-2 nm thick) are formed surrounding 2-14-1 hard phase grains when the annealing time is over 6 min. Further annealing resulted in a more distinct hard phase surrounded by a nonmagnetic grain boundary phase {approx} 1 nm in thickness. The thin grain boundary layer phase starts to disappear with annealing time over 11 min. The partitioning behavior of various elements at different annealing conditions appears to be associated with significant changes in magnetic properties, leading to an improved optimum microstructure.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Organization:
USDOE
OSTI ID:
1005755
Journal Information:
J. Appl. Phys., Vol. 105, Issue (7) ; 03, 2009; ISSN 0021-8979
Country of Publication:
United States
Language:
ENGLISH