skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tunable thermodynamics and kinetics for hydrogen storage : nanoparticle synthesis using ordered polymertemplates.

Conference ·
OSTI ID:1003964

Theory and experiment suggest nanoscale hydride particles are destabilized relative to bulk, but the origin of this effect is unclear. Both size and local environment may play a role. The overall project objective is to achieve tunable thermodynamics for hydrogen storage materials by controlling nanoparticle size, composition, and environment. Key Goals for FY09 are: (1) Demonstrate and downselect infiltration methods; (2) Measure desorption kinetics for MgH{sub 2} and NaAlH{sub 4} nanoparticles and LiBH{sub 4} thin films; (3) Benchmark DFT and atomistic nanoparticle models using Quantum Monte Carlo (QMC); and (4) Quantify effect of nanoparticle size on {Delta}H{sub d}{sup o} using MgH{sub 2} as initial example. Summary of the key results are: (1) New highly ordered nanoporous templates enable systematic probing of nanoscale effects - Nanoscale NaAlH{sub 4} particles (as small as 1.5 nm diameter) exhibit improved H{sub 2} desorption kinetics relative to bulk and Preliminary data suggest MgH{sub 2} nanoparticle formation and possibly improved desorption kinetics; (2) Benchmarking DFT against QMC reveals significant errors that are non-systematic (H{sub 2} desorption energies underpredicted by as much as 30 kJ/mol); (3) QMC predicts greatest effect of size is for extremely small particles; e.g. (MgH{sub 2}){sub n}, n {le} 6 which is much smaller than predicted by Wolfe construction approach and observed in experiments and it suggests factors other than electronic structure (e.g. surrounding chemical environment) influence stability; (4) New NanoPEGS code developed and tested for MgH{sub 2} 2particles; and (5) New mass spec tool (STMBMS) reveals key details of hydrogen desorption process.

Research Organization:
Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC04-94AL85000
OSTI ID:
1003964
Report Number(s):
SAND2010-2419C; TRN: US201103%%233
Resource Relation:
Conference: Proposed for presentation at the DOE Hydrogen Program Annual Merit Review held June 7-10, 2010 in Crystal City, VA.
Country of Publication:
United States
Language:
English