skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Carbon Nanotube Effects on Electroluminescence and Photovoltaic Response in Conjugated Polymers

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.2152113· OSTI ID:1003579

This letter reports the experimental results of enhanced electroluminescence (EL) and photovoltaic (PV) response upon doping single-wall carbon nanotubes (SWNTs) into conjugated polymer poly[2-methoxy-5-(2{prime}-ethylhexyloxy)-1, 4-phenylenevinylene] (MEHPPV) based on single-layer light-emitting diodes. We found that the dispersed SWNTs result in two processes: charge transport and exciton dissociation at the tube-chain interface in the SWNT/polymer composites. The detailed EL and PV studies indicate that low SWNT doping concentrations mainly improve the bipolar charge injection, leading to enhanced both reverse and forward EL with reduced threshold voltage. As the SWNT doping concentration continues to increase, the interfacial exciton dissociation becomes dominated, giving rise to an increased PV response. This SWNT concentration-dependent charge transport and exciton dissociation present a pathway to individually address the dual EL and PV functionalities of SWNT-doped polymer composites by controlling the doping level of the SWNTs.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
1003579
Journal Information:
Applied Physics Letters, Vol. 87, Issue 26; ISSN 0003-6951
Country of Publication:
United States
Language:
English