skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: CO2 Hydrate: Synthesis, Composition, Structure, Dissociation Behavior, and a Comparison to Structure I CH4 Hydrate

Journal Article · · Journal of Physical Chemistry B
DOI:https://doi.org/10.1021/jp027391j· OSTI ID:1003233

Structure I (sI) carbon dioxide (CO{sub 2}) hydrate exhibits markedly different dissociation behavior from sI methane (CH{sub 4}) hydrate in experiments in which equilibrated samples at 0.1 MPa are heated isobarically at 13 K/h from 210 K through the H{sub 2}O melting point (273.15 K). The CO{sub 2} hydrate samples release only about 3% of their gas content up to temperatures of 240 K, which is 22 K above the hydrate phase boundary. Up to 20% is released by 270 K, and the remaining CO{sub 2} is released at 271.0 {+-} 0.5 K, where the sample temperature is buffered until hydrate dissociation ceases. This reproducible buffering temperature for the dissociation reaction CO{sub 2}{center_dot}nH{sub 2}O = CO{sub 2}(g) + nH{sub 2}O(l to s) is measurably distinct from the pure H{sub 2}O melting point at 273.15 K, which is reached as gas evolution ceases. In contrast, when sI CH{sub 4} hydrate is heated at the same rate at 0.1 MPa, >95% of the gas is released within 25 K of the equilibrium temperature (193 K at 0.1 MPa). In conjunction with the dissociation study, a method for efficient and reproducible synthesis of pure polycrystalline CO{sub 2} hydrate with suitable characteristics for material properties testing was developed, and the material was characterized. CO{sub 2} hydrate was synthesized from CO{sub 2} liquid and H{sub 2}O solid and liquid reactants at pressures between 5 and 25 MPa and temperatures between 250 and 281 K. Scanning electron microscopy (SEM) examination indicates that the samples consist of dense crystalline hydrate and 50--300 {mu}m diameter pores that are lined with euhedral cubic hydrate crystals. Deuterated hydrate samples made by this same procedure were analyzed by neutron diffraction at temperatures between 4 and 215 K; results confirm that complete conversion of water to hydrate has occurred and that the measured unit cell parameter and thermal expansion are consistent with previously reported values. On the basis of measured weight gain after synthesis and gas yields from the dissociation experiments, approximately all cages in the hydrate structure are filled such that n {approx} 5.75.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
1003233
Journal Information:
Journal of Physical Chemistry B, Vol. 107, Issue 23; ISSN 1520--6106
Country of Publication:
United States
Language:
English

Similar Records

The structure of CO2 hydrate between 0.7 and 1.0 GPa
Journal Article · Wed Nov 05 00:00:00 EST 2014 · Journal of Chemical Physics · OSTI ID:1003233

The structure of CO{sub 2} hydrate between 0.7 and 1.0 GPa
Journal Article · Fri Nov 07 00:00:00 EST 2014 · Journal of Chemical Physics · OSTI ID:1003233

Neutron diffraction studies of CO{sub 2} clathrate hydrate: Formation from deuterated ice
Journal Article · Thu Jun 01 00:00:00 EDT 2000 · Journal of Physical Chemistry A: Molecules, Spectroscopy, Kinetics, Environment, amp General Theory · OSTI ID:1003233