skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structural basis for the coupling between activation and inactivation gates in K[superscript +] channels

Journal Article · · Nature
DOI:https://doi.org/10.1038/nature09136· OSTI ID:1002559

The coupled interplay between activation and inactivation gating is a functional hallmark of K{sup +} channels. This coupling has been experimentally demonstrated through ion interaction effects and cysteine accessibility, and is associated with a well defined boundary of energetically coupled residues. The structure of the K{sup +} channel KcsA in its fully open conformation, in addition to four other partial channel openings, richly illustrates the structural basis of activation-inactivation gating. Here, we identify the mechanistic principles by which movements on the inner bundle gate trigger conformational changes at the selectivity filter, leading to the non-conductive C-type inactivated state. Analysis of a series of KcsA open structures suggests that, as a consequence of the hinge-bending and rotation of the TM2 helix, the aromatic ring of Phe103 tilts towards residues Thr74 and Thr75 in the pore-helix and towards Ile100 in the neighbouring subunit. This allows the network of hydrogen bonds among residues Trp67, Glu71 and Asp80 to destabilize the selectivity filter, allowing entry to its non-conductive conformation. Mutations at position 103 have a size-dependent effect on gating kinetics: small side-chain substitutions F103A and F103C severely impair inactivation kinetics, whereas larger side chains such as F103W have more subtle effects. This suggests that the allosteric coupling between the inner helical bundle and the selectivity filter might rely on straightforward mechanical deformation propagated through a network of steric contacts. Average interactions calculated from molecular dynamics simulations show favourable open-state interaction-energies between Phe103 and the surrounding residues. We probed similar interactions in the Shaker K{sup +} channel where inactivation was impaired in the mutant I470A. We propose that side-chain rearrangements at position 103 mechanically couple activation and inactivation in KcsA and a variety of other K{sup +} channels.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Organization:
USDOE
OSTI ID:
1002559
Journal Information:
Nature, Vol. 466, Issue 07, 2010
Country of Publication:
United States
Language:
ENGLISH

Similar Records

Mechanism of activation gating in the full-length KcsA K[superscript +] channel
Journal Article · Thu Oct 25 00:00:00 EDT 2012 · Proc. Natl. Acad. Sci. USA · OSTI ID:1002559

Molecular Determinants of Gating at the Potassium-Channel Selectivity Filter
Journal Article · Sun Jan 01 00:00:00 EST 2006 · Nat. Struct. Mol. Biol. · OSTI ID:1002559

Rapid constriction of the selectivity filter underlies C-type inactivation in the KcsA potassium channel
Journal Article · Thu Aug 02 00:00:00 EDT 2018 · Journal of General Physiology · OSTI ID:1002559