Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Creep Behavior of Glass/Ceramic Sealant and its Effect on Long-term Performance of Solid Oxide Fuel Cells

Journal Article · · International Journal of Applied Ceramic Technology, 8(1):49-59

The creep behavior of glass or glass-ceramic sealant materials used in solid oxide fuel cells (SOFCs) becomes relevant under SOFC operating temperatures. In this paper, the creep of glass-ceramic sealants was experimentally examined, and a standard linear solid model was applied to capture the creep behavior of glass ceramic sealant materials developed for planar SOFCs at high temperatures. The parameters of this model were determined based on the creep test results. Furthermore, the creep model was incorporated into finite-element software programs SOFC-MP and Mentat-FC developed at Pacific Northwest National Laboratory for multi-physics simulation of SOFCs. The effect of creep of glass ceramic sealant materials on the long-term performance of SOFC stacks was investigated by studying the stability of the flow channels and the stress redistribution in the glass seal and on the various interfaces of the glass seal with other layers. Finite element analyses were performed to quantify the stresses in various parts. The stresses in glass seals were released because of creep behavior during operations.

Research Organization:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1002195
Report Number(s):
PNNL-SA-67391; AA2530000
Journal Information:
International Journal of Applied Ceramic Technology, 8(1):49-59, Journal Name: International Journal of Applied Ceramic Technology, 8(1):49-59 Journal Issue: 1 Vol. 8
Country of Publication:
United States
Language:
English