skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: CO activation pathways and the mechanism of Fischer–Tropsch synthesis

Journal Article · · Journal of Catalysis

Unresolved mechanistic details of monomer formation in Fischer–Tropsch synthesis (FTS) and of its oxygen rejection routes are addressed here by combining kinetic and theoretical analyses of elementary steps on representative Fe and Co surfaces saturated with chemisorbed CO. These studies provide experimental and theoretical evidence for hydrogen-assisted CO activation as the predominant kinetically-relevant step on Fe and Co catalysts at conditions typical of FTS practice. H2 and CO kinetic effects on FTS rates and oxygen rejection selectivity (as H2O or CO2) and density functional theory estimates of activation barriers and binding energies are consistent with H-assisted CO dissociation, but not with the previously accepted kinetic relevance of direct CO dissociation and chemisorbed carbon hydrogenation elementary steps. H-assisted CO dissociation removes O-atoms as H2O, while direct dissociation forms chemisorbed oxygen atoms that desorb as CO2. Direct CO dissociation routes are minor contributors to monomer formation on Fe and may become favored at high temperatures on alkali-promoted catalysts, but not on Co catalysts, which remove oxygen predominantly as H2O because of the preponderance of Hassisted CO dissociation routes. The merging of experiment and theory led to the clarification of persistent mechanistic issues previously unresolved by separate experimental and theoretical inquiries.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1001488
Journal Information:
Journal of Catalysis, Vol. 272, Issue 2; ISSN 0021-9517
Country of Publication:
United States
Language:
English