skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Photochemistry of 1,1,1-Trifluoroacetone on Rutile TiO2(110)

Journal Article · · Journal of Physical Chemistry C, 114(40):16900-16908
DOI:https://doi.org/10.1021/jp910507k· OSTI ID:1000624

The ultraviolet (UV) photon-induced photodecomposition of 1,1,1-trifluoroacetone (TFA) adsorbed on the rutile TiO2(110) surface has been investigated with photon stimulated desorption (PSD), temperature programmed desorption (TPD) and density functional theory (DFT). TFA adsorbed molecularly on the reduced surface (8% oxygen vacancies) in states desorbing below 300 K with trace thermal decomposition observed in TPD. Adsorption of TFA on a preoxidized TiO2(110) surface (accomplished by pre-exposure with 20 L O2) led to formation of a new TFA desorption state at 350 K, assigned to decomposition of a TFA-diolate species ((CF3)(CH3)COO). No TFA photochemistry was detected on the reduced surface. UV irradiation of TFA on the oxidized surface depleted TFA in the 350 K state, with TFA molecules in other TPD states unaffected. PSD measurements reveal that both carbonyl substituents (CH3 and CF3), as well as CO, were liberated during UV exposure at 95 K. Post-irradiation TPD showed evidence for both acetate (evolving as ketene at 650 K) and trifluoroacetate (evolving as CO2 at 600 K) as surface-bound photodecomposition products. The CO PSD product was not due to adsorbed CO, to mass spectrometer cracking of a CO-containing PSD product, or from background effects, but originated from complete fragmentation of an unidentified adsorbed TFA species. Thermodynamic analysis using DFT indicated that the photodecomposition of the TFA-diolate was likely not driven by thermodynamics alone as both pathways (CH3+trifluoroacetate and CF3+acetate) were detected when thermodynamics shows a clear preference for only one (CF3+acetate). These observations are in contrast to the photochemical behavior of acetone, butanone and acetaldehyde on TiO2(110), where only one of the two carbonyl substituent groups was observed, with a stoichiometric amount of carboxylate containing the other substituent left on the surface. We conclude that fluorination significantly alters the electronic structure of adsorbed carbonyls on TiO2(110) in such a way as to promote multiple channels of photofragmentation. Factors that dictate the partitioning between the three TFA channels are not related to photon energy (above that of the TiO2 band gap), but likely to the electronic structure of the charge transfer excited state.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1000624
Report Number(s):
PNNL-SA-69471; ISSN 1932--7455; 35219; 35193; KC0302010; TRN: US1100154
Journal Information:
Journal of Physical Chemistry C, 114(40):16900-16908, Vol. 114, Issue 40; ISSN 1932--7447
Country of Publication:
United States
Language:
English