skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Spall and damage behavior of S200F beryllium

Journal Article ·
DOI:https://doi.org/10.1063/1.3295186· OSTI ID:992187

We have performed a series of plate impact experiments to study the strength and spall damage behavior of S200F Be. Peak stresses achieved were in the range from 5.6-19.2 GPa. VISAR data show long rise times in the approach to the shocked state believed to be the result of twinning occurring alongside, or in defference to slip, in this hcp material, with its free surface never achieving a steady velocity. This data indicate brittle spall behavior with spall strengths in the range of 0.8-0.9 GPa. In experiments where target thickness is varied, we see evidence of precursor decay and present calculations of the Hugoniot Elastic Limit (HEL). Beryllium is a strategically important material to the aerospace and defense industries worldwide. In spite of this, there is surprisingly little recent literature on the dynamic behavior of this material, particularly the S200F grade. Much of the earlier work was performed on either S200D or S200E grades of Be [1,2] from Brush Wellman, Inc., or on material of unstated pedigree [3]. A discussion of the evolution in material processing, resulting chemical composition, grain size, and crystallographic texture in these as-processed grades of Be can be found in [4]. In general, progressing from S200D, to E, to F entails reduced BeO and other impurity contents, reduced grain size, and a reduction in crystallographic texture of the starting material [4]. The primary goal of this investigation was to study the strength and damage behavior of S200F under dynamic loading conditions. A secondary goal was to obtain equation-of-state (EOS) data to supplement and compare with those already reported in the literature.

Research Organization:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC52-06NA25396
OSTI ID:
992187
Report Number(s):
LA-UR-09-05055; LA-UR-09-5055; TRN: US201022%%174
Country of Publication:
United States
Language:
English