skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of thermal decarbonation on the stable isotope composition of carbonates

Conference ·
OSTI ID:975108

The unusual texture and stable isotope variability of carbonates in AH84001 have been used as evidence for early life on Mars (Romanek et al., 1994; McKay et al., 1996). Oxygen and carbon isotope variability is most commonly attributed to low-temperature processes, including Rayleigh-like fractionation associated with biological activity. Another possible explanation for the isotopic variability in meteoritic samples is thermal decarbonation. In this report, different carbonates were heated in a He-stream until decomposition temperatures were reached. The oxygen and carbon isotope ratios ({delta}{sup 18}O and {delta}{sup 13}C values) of the resulting gas were measured on a continuous flow isotope ratio mass spectrometer. The aim of this work is to evaluate the possibility that large isotopic variations can be generated on a small scale abiogenically, by the process of thermal decarbonation. Oxygen isotope fractionations of >4{per_thousand} have been measured during decarbonation of calcite at high temperatures (McCrea, 1950), and in excess of 6{per_thousand} for dolomite decarbonated between 500 and 600 C (Sharma and Clayton, 1965). Isotopic fractionations of this magnitude, coupled with Rayleigh-like distillation behavior could result in very large isotopic variations on a small scale. To test the idea, calcite, dolomite and siderite were heated in a quartz tube in a He-stream in excess of 1 atmosphere. Simultaneous determinations of {delta}{sup 13}C and {Delta}{sup 18}O values were obtained on 250 {micro}l aliquots of the CO{sub 2}-bearing He gas using an automated 6-way switching valve system (Finnigan MAT GasBench II) and a Finnigan MAT Delta Plus mass spectrometer. It was found that decarbonation of calcite in a He atmosphere begins at 720 C, but the rate significantly increases at temperatures of 820 C. After an initial light {delta}{sup 18}O value of -14.1{per_thousand} at 720 C associated with very early decarbonation, {delta}{sup 18}0 values increase to a constant -11.8{per_thousand}, close to the accepted value of -12.09{per_thousand} (PDB). After 10 minutes at 820 C, the {delta}{sup 18}O values and signal strength both begin to decrease linearly to a {delta}{sup 18}O value of -14.75 and very low amounts of CO{sub 2} (Fig. 1). In contrast, the {delta}{sup 13}C values are extremely constant (0.12 {+-} 0.25{per_thousand}) for all measurements, in very good agreement with accepted values of 0.33{per_thousand} (PDB). There is much less isotopic variability during dolomite decarbonation. CO{sub 2} is first detected at 600 C. The signal strength increases by an order of magnitude between 670 and 700 C and again at 760 C. Both {delta}{sup 13}C and {delta}{sup 18}O values are nearly constant over the entire temperature range and sample size. For oxygen, the measured {delta}{sup 18}O values averaged -20.9 {+-} 0.7{per_thousand} (n = 30). Including only samples over 700 C, the average is -21.2 {+-} 0.2{per_thousand} compared to the accepted value of -21{per_thousand}. Carbon is similarly constant. The average {delta}{sup 13}C value is -2.50{per_thousand} compared to the accepted value of -2.62{per_thousand}. Far more variability is seen during the decomposition of siderite. Two samples were analyzed. In both samples, the initial {delta}{sup 18}O values were far lower than expected.

Research Organization:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Organization:
USDOE
OSTI ID:
975108
Report Number(s):
LA-UR-01-0222; LA-UR-01-222; TRN: US201008%%80
Resource Relation:
Conference: "Submitted to: 32nd Lunar and Planetary Science Conference, Houston, TX, 12-16 March 2001"
Country of Publication:
United States
Language:
English