skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: NMR studies of liquid crystals and molecules dissolved in liquid crystal solvents

Thesis/Dissertation ·
DOI:https://doi.org/10.2172/970013· OSTI ID:970013
 [1]
  1. Univ. of California, Berkeley, CA (United States)

This thesis describes several studies in which nuclear magnetic resonance (nmr) spectroscopy has been used to probe the structure, orientation and dynamics of liquid crystal mesogens and molecules dissolved in liquid crystalline phases. In addition, a modern high field nmr spectrometer is described which has been used to perform such nmr studies. Chapter 1 introduces the quantum mechanical formalisms used throughout this thesis and briefly reviews the fundamentals of nuclear spin physics and pulsed nmr spectroscopy. First the density operator is described and a specific form for the canonical ensemble is derived. Then Clebsch-Gordon coefficients, Wigner rotation matrices, and irreducible tensor operators are reviewed. An expression for the equilibrium (Curie) magnetization is obtained and the linear response of a spin system to a strong pulsed r.f. irradiation is described. Finally, the spin interaction Hamiltonians relevant to this work are reviewed together with their truncated forms. Chapter 2 is a deuterium magnetic resonance study of two 'nom' liquid crystals which possess several low temperature mesomorphic phases. Specifically, deuterium quadrupolar echo spectroscopy is used to determine the orientation of the liquid crystal molecules in smectic phases, the changes in molecular orientation and motion that occur at smectic-smectic phase transitions, and the order of the phase transitions. For both compounds, the phase sequence is determined to be isotropic, nematic, smectic A, smectic C, smectic BA, smectic BC, and crystalline. The structure of the smectic A phase is found to be consistent with the well-known model of a two dimensional liquid in which molecules are rapidly rotating about their long axes and oriented at right angles to the plane of the layers. Molecules in the smectic C phase are found to have their long axes tilted with respect to the layer normal, and the tilt angle is temperature dependent, increasing from zero at the smectic A - smectic C transition and reaching a maximum at 9° at the smectic C - smectic BA transition. This finding contradicts the results of X-ray diffraction studies which indicate that the tilt angle is 18° and temperature independent. The smectic BA - smectic BC phase transition is observed for the first time, and is found to be first order, a result that contradicts the prediction of a mean theory by McMillian. Chapter 3 is a multiple quantum nmr study of n-hexane oriented in a nematic liquid crystal solvent. The basic three pulse multiple quantum experiment is discussed which enables the observation of transitions for which |Δm|>1, and then the technique of the separation of multiple quantum orders by phase incrementation in the multiple quantum evolution period is reviewed (TPPI). An explicit example of multiple quantum nmr is given by the calculation of the multiple quantum spectrum of an oriented methyl group.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
DOE Contract Number:
AC02-05CH11231; AC03-76SF00098
OSTI ID:
970013
Report Number(s):
LBL-13736; TRN: US201002%%1053
Resource Relation:
Related Information: Designation of Academic Dissertation: Doctoral Thesis; Academic Degree: Ph.D.; Name of Academic Institution: UC Berkeley
Country of Publication:
United States
Language:
English