skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Influence of necking propensity on the dynamic-tensile-extrusion response of fluoropolymers

Conference ·

The quasi-static and dynamic responses of two fluoropolymers - polytetrafluoroethylene (PTFE) and polychlorotrifluoroethylene (PCTFE) - have been extensively characterized. Here we investigate the influence of the propensity to neck or not between PCTFE and PTFE on their responses under Dynamic-Tensile-Extrusion (Dyn-TenExt). The Dyn-Ten-Ext technique was originally developed for metals and applied to copper and tantalum spheres by Gray, et al. as a tensile corollary to compressive Taylor Cylinder Impact Testing. Under Taylor Cylinder loading both PTFE and PCTFE exhibit a classic three-diameter ductile deformation pattern. The ductile-to-brittle transition in PTFE occurs at 131 m s{sup -1} with a very tight transition range in impact stress of less than 4 m s{sup -1}. Conversely, the ductile-to-brittle transition in PCTFE occurs between 165 and 200 m s{sup -1} with a gradual transition to stochastic crack formation and ultimately failure. Under Dyn-Ten-Ext loading the onset of extrusion occurs above 164 and 259 m s{sup -1} for PTFE and PCTFE respectively.

Research Organization:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC52-06NA25396
OSTI ID:
962324
Report Number(s):
LA-UR-09-01420; LA-UR-09-1420; TRN: US200919%%85
Resource Relation:
Journal Volume: 1; Conference: DYMAT09 Conference ; September 7, 2009 ; Brussels, Belgium
Country of Publication:
United States
Language:
English