skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Measurement of the Single Top Quark Production Cross Section in 1.96-TeV Proton-Antiproton Collisions

Thesis/Dissertation ·
DOI:https://doi.org/10.2172/952637· OSTI ID:952637

Top quarks are predominantly produced in pairs via the strong interaction in $$\bar{p}$$p collisions at √s = 1.96 TeV . The top quark has a weak isospin 1/2, composing a weak isospin doublet with the bottom quark. This characteristic predicts not only top quark pair production via strong interaction but also single production together with a bottom quark via weak interaction. However, finding single top quark production is challenging since it is rarely produced (σ singletop = 2.9 pb) against background processes with the same final state like W+jets and t$$\bar{t}$$. A measurement of electroweak single top production probes the W-t-b vertex, which provides a direct determination of the Cabbibo-Kobayashi-Maskawa (CKM) matrix element |Vtb|. The sample offers a source of almost 100% polarized top quarks. This thesis describes an optimized search for s-channel single top quark production and a measurement of the single top production cross section using 2.7 fb-1 of data accumulated with the CDF detector. We are using events with one high-pT lepton, large missing ET and two identified b-quark jets where one jet is identified using a secondary vertex tagger, called SecVtx, and the other jet is identified using SecVtx or a jet probability tagger, called JetProb. In this analysis we have developed a kinematics fitter and a likelihood-based separator between signal and background. As a result, we found that the probability (p-value) that the candidate events originate from a background fluctuation in the absence of single top s-channel production is 0.003, which is equivalent to 2.7 σ deviations in Gaussian statistics, and this excess corresponds to the single top s-channel cross section of 2.38-0.84+1.01 pb. An observed value of |Vtb| is 1.43-0.26+0.38(experimental) ± 0.11(theory). We also set the 95% CL. upper limit of σs = 4.15 pb for the s-channel production cross section.

Research Organization:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC02-07CH11359
OSTI ID:
952637
Report Number(s):
FERMILAB-THESIS-2009-13; TRN: US0902559
Country of Publication:
United States
Language:
English