skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: DOEGO85004_1: Final Non-proprietary Technical Report, Generating Process and Economic Data for Preliminary Design of PureVision Biorefineries DOEGO85004_2: One Original Final Proprietary Technical Report to be mailed to DOE Golden.

Technical Report ·
DOI:https://doi.org/10.2172/922199· OSTI ID:922199

The overall objective of the project was to define a two-stage reactive fractionation process for converting corn stover into a solid cellulose stream and two liquid streams containing mostly hemicellulosic sugars and lignin, respectively. Toward this goal, biomass fractionation was conducted using a small continuous pilot unit with a nominal capacity of 100 pounds per day of dry biomass to generate performance data using primarily corn stover as feedstock. In the course of the program, the PureVision process was optimized for efficient hemicellulose hydrolysis in the first stage employing autohydrolysis and delignification in the second stage using sodium hydroxide as a catalyst. The remaining cellulose was deemed to be an excellent substrate for producing fermentation sugars, requiring 40% less enzymes for hydrolysis than conventional pretreatment systems using dilute acid. The fractionated cellulose was also determined to have potential higher-value applications as a pulp product. The lignin coproduct was determined to be substantially lower in molecular weight (MW) compared to lignins produced in the kraft or sulfite pulping processes. This low-MW lignin can be used as a feed and concrete binder and as an intermediate for producing a range of high-value products including phenolic resins. This research adds to the understanding of the biomass conversion area in that a new process was developed in the true spirit of biorefineries. The work completed successfully demonstrated the technical effectiveness of the process at the pilot level indicating the technology is ready to advance to a 2–3 ton per day scale. No technical showstoppers are anticipated in scaling up the PureVision fractionation process to commercial scale. Also, economic feasibility of using the PureVision process in a commercial-scale biorefinery was investigated and the minimum ethanol selling price for the PureVision process was calculated to be $0.94/gal ethanol vs. $1.07/gal ethanol for the NREL process. Thus, the PureVision process is economically attractive. Given its technical and economic feasibility, the project is of benefit to the public in the following ways: 1) it demonstrated a novel biomass fractionation process that can provide domestic supply of renewable transportation fuel from all three biomass components (cellulose, hemicellulose and lignin), 2) the lignin stream from the process has many higher-value applications beyond simply burning the lignin for energy as proposed by competing technologies, 3) it can be deployed in rural areas and create jobs in these areas, and 3) it can add to the nation’s economy and security.

Research Organization:
PureVision Technology, Inc.
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
DOE Contract Number:
FC36-05GO85004
OSTI ID:
922199
Report Number(s):
DOEGO85004-1; TRN: US200806%%213
Country of Publication:
United States
Language:
English