skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Two-phase flow visualization and relative permeability measurement in transparent replicas of rough-walled rock fractures

Conference ·
OSTI ID:888426

Understanding and quantifying multi-phase flow in fractures is important for mathematical and numerical simulation of geothermal reservoirs, nuclear waste repositories, and petroleum reservoirs. While the cubic law for single-phase flow has been well established for parallel-plate fractures theoretically and experimentally, no reliable measurements of multi-phase flow in fractures have been reported. This work reports the design and fabrication of an apparatus for visualization of two-phase flow and for measurement of gas-liquid relative permeability in realistic rough-walled rock fractures. A transparent replica of a natural rock fracture from a core specimen is fabricated by molding and casting in clear epoxy. Simultaneous flow of gas and liquid with control of capillary pressure at inlet and outlet is achieved with the Hassler ''sandwich'' design: liquid is injected to the fracture through a porous block, while gas is injected directly to the edge of the fracture through channels in the porous block. A similar arrangement maintains capillary separation of the two phases at the outlet. Pressure drops in each phase across the fracture, and capillary pressures at the inlet and outlet, are controlled by means of pumps and needle valves, and are measured by differential and absolute pressure transducers. The clear epoxy cast of the natural fracture preserves the geometry of the fracture and permits visual observation of phase distributions. The fracture aperture distribution can be estimated by filling the fracture with a dyed liquid, and making pointwise measurements of the intensity of transmitted light. A set of two-phase flow experiments has been performed which has proven the viability of the basic experimental design, while also suggesting further improvements in the apparatus. Preliminary measurements are presented for single-phase permeability to liquid, and for relative permeabilities in simultaneous flow of liquid and gas.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE
OSTI ID:
888426
Report Number(s):
SGP-TR-134-26; TRN: US200619%%268
Resource Relation:
Conference: Proceedings, sixteenth workshop on geothermal reservoir engineering, Stanford University, Stanford, CA, January 23-25, 1991
Country of Publication:
United States
Language:
English