skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermophilic Gram-Positive Biocatalysts for Biomass Conversion to Ethanol

Technical Report ·
DOI:https://doi.org/10.2172/882538· OSTI ID:882538

Production of energy from renewable sources is receiving increased attention due to the finite nature of fossil fuels and the environmental impact associated with the continued large scale use of fossil energy sources. Biomass, a CO2-neutral abundant resource, is an attractive alternate source of energy. Biomass-derived sugars, such as glucose, xylose, and other minor sugars, can be readily fermented to fuel ethanol and commodity chemicals. Extracellular cellulases produced by fungi are commercially developed for depolymerization of cellulose in biomass to glucose for fermentation by appropriate biocatalysts in a simultaneous saccharification and fermentation (SSF) process. Due to the differences in the optimum conditions for the activity of the fungal cellulases and the growth and fermentation characteristics of the current industrial biocatalysts, SSF of cellulose is envisioned at conditions that are not optimal for the fungal cellulase activity leading to higher than required cost of cellulase in SSF. We have isolated bacterial biocatalysts whose growth and fermentation requirements match the optimum conditions for commercial fungal cellulase activity (pH 5.0 and 50 deg. C). These isolates fermented both glucose and xylose, major components of cellulose and hemicellulose, respectively, to L(+)-lactic acid. Xylose was metabolized through the pentose-phosphate pathway by these organisms as evidenced by the fermentation profile and analysis of the fermentation products of 13C1-xylose by NMR. As expected for the metabolism of xylose by the pentose-phosphate pathway, 13C-lactate accounted for more than 90% of the total 13C-labeled products. All three strains fermented crystalline cellulose to lactic acid with the addition of fungal cellulase (Spezyme CE) (SSF) at an optimum of about 10 FPU/g cellulose. These isolates also fermented cellulose and sugar cane bagasse hemicellulose acid hydrolysate simultaneously. Based on fatty acid profile and 16S rRNA sequence, these isolates cluster with Bacillus coagulans although B. coagulans type strain, ATCC 7050, failed to utilize xylose as a carbon source. For successful production of ethanol from pyruvate, both pyruvate decarboxylase (PDC) and alcohol dehydrogenase (AHD) need to be produced at optimal levels in these biocatalysts. A plasmid containing the S. ventriculi pdc gene and the adh gene from geobacillus stearothermophilus was constructed using plasmid pWH1520 that was successfully used for expression of pdc in B. megaterium. The resulting portable ethanol (PET) plasmid, pJAM423, was transformed into B. megaterium. After xylose induction, a significant fraction of cell cytoplasm was composed of the S. ventriculi PDC and G. stearothermophilus ADH proteins. In preliminary experiments, the amount of ethanol produced by b. megaterium with plasmid pJAM423 was about twice (20 mM) of the bacterium without the plasmid. These results show that the PET operon is functional in B. megaterium but high level ethanol production needs further genetic and metabolic engineering. A genetic transfer system for the second generation biocatalysts needs to be developed for transferring the plasmid pJAM423 and its derivatives for engineering these organisms for ethanol production from biomass derived sugars and cellulose to ethanol. One of the new biocatalysts, strain P4-102B was found to be transformable with plasmids and the method for introducing plasmid pJAM423 into this strain and expression of the encoded DNA is being optimized. These new second generation biocatalysts have the potential to reduce the cost of SSF by minimizing the amount of fungal cellulases, a significant cost component in the use of biomass as a renewable resource for production of fuels and chemicals.

Research Organization:
Univ. of Florida, Gainesville, FL (United States)
Sponsoring Organization:
Energy Efficiency and Renewable Energy
DOE Contract Number:
FC36-01GO11073
OSTI ID:
882538
Report Number(s):
DOE/GO/11073-1; TRN: US200716%%256
Country of Publication:
United States
Language:
English