skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: FIBROUS MONOLITH WEAR RESISTANT COMPONENTS FOR THE MINING INDUSTRY

Technical Report ·
DOI:https://doi.org/10.2172/829541· OSTI ID:829541

During the reporting period, work continued on development of formulations using the materials down-selected from the initially identified contenders for the fibrous monolith wear resistant components. In the previous reporting period, a two-stage binder removal process was developed that resulted in prototype parts free of voids and other internal defects. During the current reporting period, work was performed to characterize the two-stage binder removal process for WC-Co based FM material systems. Use of this process has resulted in the fabrication of defect free sintered WC-Co FM bodies, with minimal free carbon porosity and densities approaching 100% theoretical. With the elimination of free carbon porosity and other binder removal process related defects, development work focused on optimizing the densification and eliminating defects observed in WC-Co based FM consolidated by pressureless sintering. Shrinkage of the monolithic core and shell materials used in the WC-Co based FM system was measured, and differences in material shrinkage were identified as a potential cause of cell boundary cracking observed in sintered parts. Re-formulation of material blends for this system was begun, with the goal of eliminating mechanical stresses during sintering by matching the volumetric shrinkage of the core and shell materials. Thirty-three 7/8 inch drill bit inserts (WC-Co(6%)/WC-Co(16%) FM) were hot pressed during the reporting period. Six of these inserts were delivered for field-testing by Superior Rock Bit during the upcoming reporting period. In addition, Al{sub 2}O{sub 3}/Al{sub 2}O{sub 3}-TiCN FM cutting tool inserts were fabricated, and cutting tests performed.

Research Organization:
Advanced Ceramics Research Inc. (US)
Sponsoring Organization:
(US)
DOE Contract Number:
FC26-01NT41051
OSTI ID:
829541
Resource Relation:
Other Information: PBD: 25 Mar 2003
Country of Publication:
United States
Language:
English