skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Technical progress report, April 1992--June 1992

Technical Report ·
DOI:https://doi.org/10.2172/79031· OSTI ID:79031

The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of manometer size will be carried out. It is based on the molecular design of reverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis will be on iron- and molybdenum-based catalysts, but the techniques to be developed should also be generally applicable. The size of these very small and monodispersed particles will be accurately determined both separately and after in situ and ex situ coal impregnation. The as-prepared nanoparticles as well as the catalyst-impregnated coal or char matrix will be characterized using the following techniques: dynamic light scattering, x-ray diffraction, x-ray photoelectron spectroscopy, scanning and/or transmission electron microscopy, and selective chemisorption. Catalytic activity tests will be conducted under standardized conditions in both hydrogenation and hydrodesulfurization reactions. The effect of particle size of these unsupported catalysts on the product yield and distribution during liquefaction of a bituminous and a subbituminous coal will thus be quantitatively determined.This quarter, the effect of ammonium tetrathiomolybdate concentration on the synthesis of molybdenum sulfide in the 0.15 M NP-5/cyclohexane/water microemulsion system is discussed.

Research Organization:
Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC22-90PC90054
OSTI ID:
79031
Report Number(s):
DOE/PC/90054-T7; ON: DE95014743; TRN: 95:005098
Resource Relation:
Other Information: PBD: Jul 1992
Country of Publication:
United States
Language:
English