skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Penetration of yawed projectiles

Technical Report ·
DOI:https://doi.org/10.2172/6375338· OSTI ID:6375338

We used computer simulations and experiment to study the penetration of tungsten-alloy projectiles into a thick, armored steel target. These projectiles, with length-to-diameter ratios of 4, strike the target with severe yaws, up to 90{degree}(side-on-impact), such as might be induced in an originally longer projectile by a multiple-spaced plate array. In this study, we focus on the terminal ballistics of these projectiles and ignore how the yaw was induced. We found that the minimum penetration depth occurs at 90{degree}yaw. This case is well approximated by the two-dimensional plane-strain penetration of a side-on cylinder. The ratio of penetration depth to diameter, P:D, for this case is larger than that for a sphere because the plane-strain geometry lacks hoop stress, which is activated in axisymmetric geometry. A more surprising result of work is that the penetration at 60{degree} yaw is only slightly deeper than that of the side-on impact. 8 refs., 15 figs., 3 tabs.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
DOE/DP
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
6375338
Report Number(s):
UCRL-ID-104890; ON: DE91001084
Country of Publication:
United States
Language:
English